\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf R. Bacher and C. Krattenthaler} % % \medskip \noindent % % {\bf Chromatic Statistics for Triangulations and Fu{\ss}--Catalan Complexes} % % \vskip 5mm \noindent % % % % We introduce Fu\ss--Catalan complexes as $d$-dimensional generalisations of triangulations of a convex polygon. These complexes are used to refine Catalan numbers and Fu{\ss}--Catalan numbers, by introducing colour statistics for triangulations and Fu{\ss}--Catalan complexes. Our refinements consist in showing that the number of triangulations, respectively of Fu{\ss}--Catalan complexes, with a given colour distribution of its vertices is given by closed product formulae. The crucial ingredient in the proof is the Lagrange--Good inversion formula. \end{document} .