\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf Gerard Jennhwa Chang, Sheng-Hua Chen, Yongke Qu, Guoqing Wang and Haiyan Zhang} % % \medskip \noindent % % {\bf On the Number of Subsequences with a Given Sum in a Finite Abelian Group} % % \vskip 5mm \noindent % % % % Suppose $G$ is a finite abelian group and $S$ is a sequence of elements in $G$. For any element $g$ of $G$, let $N_g(S)$ denote the number of subsequences of $S$ with sum $g$. The purpose of this paper is to investigate the lower bound for $N_g(S)$. In particular, we prove that either $N_g(S)=0$ or $N_g(S)\ge2^{|S|-D(G)+1}$, where $D(G)$ is the smallest positive integer $\ell$ such that every sequence over $G$ of length at least $\ell$ has a nonempty zero-sum subsequence. We also characterize the structures of the extremal sequences for which the equality holds for some groups. \end{document} .