\documentclass[12pt]{article} \usepackage{amsmath,mathrsfs,bbm} \usepackage{amssymb} \textwidth=4.825in \overfullrule=0pt \thispagestyle{empty} \begin{document} \noindent % % {\bf William Y.C. Chen and Lewis H. Liu} % % \medskip \noindent % % {\bf Permutation Tableaux and the Dashed Permutation Pattern 32--1} % % \vskip 5mm \noindent % % % % We give a solution to a problem posed by Corteel and Nadeau concerning permutation tableaux of length $n$ and the number of occurrences of the dashed pattern 32--1 in permutations on $[n]$. We introduce the inversion number of a permutation tableau. For a permutation tableau $T$ and the permutation $\pi$ obtained from $T$ by the bijection of Corteel and Nadeau, we show that the inversion number of $T$ equals the number of occurrences of the dashed pattern 32--1 in the reverse complement of $\pi$. We also show that permutation tableaux without inversions coincide with L-Bell tableaux introduced by Corteel and Nadeau. \end{document} .