\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym %\def\frac#1 #2 {{#1\over #2}} \def\emph#1{{\it #1}} \def\em{\it} \nopagenumbers \noindent % % {\bf Jennifer Vandenbussche and Douglas B. West} % % \medskip \noindent % % {\bf Independence Number of 2-Factor-Plus-Triangles Graphs} % % \vskip 5mm \noindent % % % % A {\it 2-factor-plus-triangles graph} is the union of two $2$-regular graphs $G_1$ and $G_2$ with the same vertices, such that $G_2$ consists of disjoint triangles. Let ${\cal G}$ be the family of such graphs. These include the famous ``cycle-plus-triangles'' graphs shown to be $3$-choosable by Fleischner and Stiebitz. The independence ratio of a graph in ${\cal G}$ may be less than $1/3$; but achieving the minimum value $1/4$ requires each component to be isomorphic to the 12-vertex ``Du--Ngo'' graph. Nevertheless, ${\cal G}$ contains infinitely many connected graphs with independence ratio less than $4/15$. For each odd $g$ there are infinitely many connected graphs in ${\cal G}$ such that $G_1$ has girth $g$ and the independence ratio of $G$ is less than $1/3$. Also, when $12$ divides $n$ (and $n\ne12$) there is an $n$-vertex graph in ${\cal G}$ such that $G_1$ has girth $n/2$ and $G$ is not $3$-colorable. Finally, unions of two graphs whose components have at most $s$ vertices are $s$-choosable. \bye .