\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym %\def\frac#1 #2 {{#1\over #2}} \def\emph#1{{\it #1}} \def\em{\it} \nopagenumbers \noindent % % {\bf Ryan Martin and Yi Zhao} % % \medskip \noindent % % {\bf Tiling Tripartite Graphs with $3$-Colorable Graphs} % % \vskip 5mm \noindent % % % % For any positive real number $\gamma$ and any positive integer $h$, there is $N_0$ such that the following holds. Let $N\ge N_0$ be such that $N$ is divisible by $h$. If $G$ is a tripartite graph with $N$ vertices in each vertex class such that every vertex is adjacent to at least $(2/3+ \gamma) N$ vertices in each of the other classes, then $G$ can be tiled perfectly by copies of $K_{h,h,h}$. This extends the work in [Discrete Math. {\bf254} (2002), 289--308] and also gives a sufficient condition for tiling by any fixed 3-colorable graph. Furthermore, we show that the minimum-degree $(2/3+ \gamma) N$ in our result cannot be replaced by $2N/3+ h-2$. \bye .