\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym %\def\frac#1 #2 {{#1\over #2}} \def\emph#1{{\it #1}} \def\em{\it} \nopagenumbers \noindent % % {\bf Andrzej Pezarski and Micha\l\ Zmarz} % % \medskip \noindent % % {\bf Non-Repetitive 3-Coloring of Subdivided Graphs} % % \vskip 5mm \noindent % % % % We show that every graph can be subdivided in a way that the resulting graph can be colored without repetitions on paths using only 3 colors. This extends the result of Thue asserting the existence of arbitrarily long nonrepetitive strings over a 3-letter alphabet. \bye .