\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym %\def\frac#1 #2 {{#1\over #2}} \def\emph#1{{\it #1}} \def\em{\it} \nopagenumbers \noindent % % {\bf Michael E. Hoffman} % % \medskip \noindent % % {\bf A Character on the Quasi-Symmetric Functions coming from Multiple Zeta Values} % % \vskip 5mm \noindent % % % % We define a homomorphism $\zeta$ from the algebra of quasi-symmetric functions to the reals which involves the Euler constant and multiple zeta values. Besides advancing the study of multiple zeta values, the homomorphism $\zeta$ appears in connection with two Hirzebruch genera of almost complex manifolds: the $\Gamma$-genus (related to mirror symmetry) and the $\hat{\Gamma}$-genus (related to an $S^1$-equivariant Euler class). We decompose $\zeta$ into its even and odd factors in the sense of Aguiar, Bergeron, and Sottille, and demonstrate the usefulness of this decomposition in computing $\zeta$ on the subalgebra of symmetric functions (which suffices for computations of the $\Gamma$- and $\hat{\Gamma}$-genera). \bye .