\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym %\def\frac#1 #2 {{#1\over #2}} \def\emph#1{{\it #1}} \def\em{\it} \nopagenumbers \noindent % % {\bf Jakub Przyby{\l}o} % % \medskip \noindent % % {\bf Irregularity Strength of Regular Graphs} % % \vskip 5mm \noindent % % % % Let $G$ be a simple graph with no isolated edges and at most one isolated vertex. For a positive integer $w$, a $w$-weighting of $G$ is a map $f:E(G)\rightarrow \{1,2,\ldots,w\}$. An irregularity strength of $G$, $s(G)$, is the smallest $w$ such that there is a $w$-weighting of $G$ for which $\sum_{e:u\in e}f(e)\neq\sum_{e:v\in e}f(e)$ for all pairs of different vertices $u,v\in V(G)$. A conjecture by Faudree and Lehel says that there is a constant $c$ such that $s(G)\le{n\over d}+c$ for each $d$-regular graph $G$, $d\ge 2$. We show that $s(G)< 16{n\over d}+6$. Consequently, we improve the results by Frieze, Gould, Karo\'nski and Pfender (in some cases by a $\log n$ factor) in this area, as well as the recent result by Cuckler and Lazebnik. \bye .