\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym %\def\frac#1 #2 {{#1\over #2}} \def\emph#1{{\it #1}} \def\em{\it} \nopagenumbers \noindent % % {\bf Joanne L. Hall} % % \medskip \noindent % % {\bf Graphs Associated with Codes of Covering Radius 1 and Minimum Distance 2} % % \vskip 5mm \noindent % % % % The search for codes of covering radius $1$ led \"{O}sterg{\aa}rd, Quistorff and Wassermann to the OQW method of associating a unique graph to each code. We present results on the structure and existence of OQW-associated graphs. These are used to find an upper bound on the size of a ball of radius $1$ around a code of length $3$ and minimum distance $2$. OQW-associated graphs and non-extendable partial Latin squares are used to catalogue codes of length $3$ over $4$ symbols with covering radius $1$ and minimum distance $2$. \bye .