\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym %\def\frac#1 #2 {{#1\over #2}} \def\emph#1{{\it #1}} \def\em{\it} \nopagenumbers \noindent % % {\bf M. Z. Garaev} % % \medskip \noindent % % {\bf A Quantified Version of Bourgain's Sum-Product Estimate in ${\Bbb F}_p$ for Subsets of Incomparable Sizes} % % \vskip 5mm \noindent % % % % Let ${\Bbb F}_p$ be the field of residue classes modulo a prime number $p.$ In this paper we prove that if $A,B\subset {\Bbb F}_p^*,$ then for any fixed $\varepsilon>0,$ $$ |A+A|+|AB|\gg \Bigl(\min\Bigl\{|B|,\, {p\over|A|}\Bigr\}\Bigr)^{1/25-\varepsilon}|A|. $$ This quantifies Bourgain's recent sum-product estimate. \bye .