\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym %\def\frac#1 #2 {{#1\over #2}} \def\emph#1{{\it #1}} \def\em{\it} \nopagenumbers \noindent % % {\bf Andrzej Dudek and Vojt\v{e}ch R\"odl} % % \medskip \noindent % % {\bf On the Tur\'an Properties of Infinite Graphs} % % \vskip 5mm \noindent % % % % Let $G^{(\infty)}$ be an infinite graph with the vertex set corresponding to the set of positive integers ${\Bbb N}$. Denote by $G^{(l)}$ a subgraph of $G^{(\infty)}$ which is spanned by the vertices $\{1,\dots,l\}$. As a possible extension of Tur\'an's theorem to infinite graphs, in this paper we will examine how large $\liminf_{l\rightarrow \infty} {|E(G^{(l)})|\over l^2}$ can be for an infinite graph $G^{(\infty)}$, which does not contain an increasing path $I_k$ with $k+1$ vertices. We will show that for sufficiently large $k$ there are $I_k$--free infinite graphs with ${1\over 4}+{1\over 200} < \liminf_{l\rightarrow \infty} {|E(G^{(l)})|\over l^2}$. This disproves a conjecture of J.~Czipszer, P.~Erd\H{o}s and A.~Hajnal. On the other hand, we will show that $\liminf_{l\rightarrow \infty} {|E(G^{(l)})|\over l^2}\le{1\over 3}$ for any $k$ and such $G^{(\infty)}$. \bye .