\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym %\def\frac#1 #2 {{#1\over #2}} \def\emph#1{{\it #1}} \def\em{\it} \nopagenumbers \noindent % % {\bf Mohammad Ghebleh} % % \medskip \noindent % % {\bf Circular Chromatic Index of Generalized Blanu\v{s}a Snarks} % % \vskip 5mm \noindent % % % % In his Master's thesis, J\'an Maz\'ak proved that the circular chromatic index of the type~1 generalized Blanu\v{s}a snark $B^1_n$ equals $3+{2\over n}$. This result provided the first infinite set of values of the circular chromatic index of snarks. In this paper we show the type~2 generalized Blanu\v{s}a snark $B^2_n$ has circular chromatic index $3+{1/\lfloor{1+3n/2}\rfloor}$. In particular, this proves that all numbers $3+1/n$ with $n\ge 2$ are realized as the circular chromatic index of a snark. For $n=1,2$ our proof is computer-assisted. \bye .