\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym %\def\frac#1 #2 {{#1\over #2}} \def\emph#1{{\it #1}} \def\em{\it} \nopagenumbers \noindent % % {\bf Kh.~Hessami Pilehrood and T.~Hessami Pilehrood} % % \medskip \noindent % % {\bf Generating Function Identities for $\zeta(2n+2), \zeta(2n+3)$ via the WZ Method} % % \vskip 5mm \noindent % % % % Using WZ-pairs we present simpler proofs of Koecher, Leshchiner and Bailey-Borwein-Bradley's identities for generating functions of the sequences $\{\zeta(2n+2)\}_{n\ge 0}$ and $\{\zeta(2n+3)\}_{n\ge 0}.$ By the same method, we give several new representations for these generating functions yielding faster convergent series for values of the Riemann zeta function. \bye .