\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym %\def\frac#1 #2 {{#1\over #2}} \def\emph#1{{\it #1}} \def\em{\it} \nopagenumbers \noindent % % {\bf Matthias K\"oppe and Sven Verdoolaege} % % \medskip \noindent % % {\bf Computing Parametric Rational Generating Functions with a Primal Barvinok Algorithm} % % \vskip 5mm \noindent % % % % Computations with Barvinok's short rational generating functions are traditionally being performed in the dual space, to avoid the combinatorial complexity of inclusion--exclusion formulas for the intersecting proper faces of cones. We prove that, on the level of indicator functions of polyhedra, there is no need for using inclusion--exclusion formulas to account for boundary effects: All linear identities in the space of indicator functions can be purely expressed using partially open variants of the full-dimensional polyhedra in the identity. This gives rise to a practically efficient, parametric Barvinok algorithm in the primal space. \bye .