\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym %\def\frac#1 #2 {{#1\over #2}} \def\emph#1{{\it #1}} \def\em{\it} \nopagenumbers \noindent % % {\bf Drew Armstrong and Sen-Peng Eu} % % \medskip \noindent % % {\bf Nonhomogeneous Parking Functions and Noncrossing Partitions} % % \vskip 5mm \noindent % % % % For each skew shape we define a nonhomogeneous symmetric function, generalizing a construction of Pak and Postnikov. In two special cases, we show that the coefficients of this function when expanded in the complete homogeneous basis are given in terms of the (reduced) type of $k$-divisible noncrossing partitions. Our work extends Haiman's notion of a parking function symmetric function. \bye .