\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym %\def\frac#1 #2 {{#1\over #2}} \def\emph#1{{\it #1}} \def\em{\it} \nopagenumbers \noindent % % {\bf Daniel Kane and Steven Sivek} % % \medskip \noindent % % {\bf On the ${\cal S}_{n}$-Modules Generated by Partitions of a Given Shape} % % \vskip 5mm \noindent % % % % Given a Young diagram $\lambda$ and the set $H^{\lambda}$ of partitions of $\{1,2,\dots$, $|\lambda|\}$ of shape $\lambda$, we analyze a particular ${\cal S}_{|\lambda|}$-module homomorphism ${\Bbb Q}H^{\lambda}\to{\Bbb Q}H^{\lambda'}$ to show that ${\Bbb Q}H^{\lambda}$ is a submodule of ${\Bbb Q}H^{\lambda'}$ whenever $\lambda$ is a hook $(n,1,1,\dots,1)$ with $m$ rows, $n\geq m$, or any diagram with two rows. \bye .