\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym %\def\frac#1 #2 {{#1\over #2}} \def\emph#1{{\it #1}} \def\em{\it} \nopagenumbers \noindent % % {\bf Tero Harju and Dirk Nowotka} % % \medskip \noindent % % {\bf Bordered Conjugates of Words over Large Alphabets} % % \vskip 5mm \noindent % % % % The border correlation function attaches to every word $w$ a binary word $\beta(w)$ of the same length where the $i$th letter tells whether the $i$th conjugate $w' = vu$ of $w =uv$ is bordered or not. Let $[{u}]$ denote the set of conjugates of the word $w$. We show that for a 3-letter alphabet $A$, the set of $\beta$-images equals $\beta(A^n) = B^* \setminus \left([{ab^{n-1}}] \cup D\right)$ where $D=\{a^n\}$ if $n \in \{5,7,9,10,14,17\}$, and otherwise $D=\emptyset$. Hence the number of $\beta$-images is $B^n_3=2^n-n-m$, where $m=1$ if $n\in \{5,7,9,10,14,17\}$ and $m=0$ otherwise. \bye .