\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym %\def\frac#1 #2 {{#1\over #2}} \def\emph#1{{\it #1}} \def\em{\it} \nopagenumbers \noindent % % {\bf Andrew Suk} % % \medskip \noindent % % {\bf A Note on $K_{k,k}$-Cross Free Families} % % \vskip 5mm \noindent % % % % We give a short proof that for any fixed integer $k$, the maximum number size of a $K_{k,k}$-cross free family is linear in the size of the groundset. We also give tight bounds on the maximum size of a $K_k$-cross free family in the case when ${\cal F}$ is intersecting or an antichain. \bye .