\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym %\def\frac#1 #2 {{#1\over #2}} \def\emph#1{{\it #1}} \def\em{\it} \nopagenumbers \noindent % % {\bf Alexandr V. Kostochka and Michael Stiebitz} % % \medskip \noindent % % {\bf Partitions and Edge Colourings of Multigraphs} % % \vskip 5mm \noindent % % % % Erd\H{o}s and Lov\'asz conjectured in 1968 that for every graph $G$ with $\chi(G)>\omega(G)$ and any two integers $s,t\geq 2$ with $s+t=\chi(G)+1$, there is a partition $(S,T)$ of the vertex set $V(G)$ such that $\chi(G[S])\geq s$ and $\chi(G[T])\geq t$. Except for a few cases, this conjecture is still unsolved. In this note we prove the conjecture for line graphs of multigraphs. \bye .