\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym %\def\frac#1 #2 {{#1\over #2}} \def\emph#1{{\it #1}} \def\em{\it} \nopagenumbers \noindent % % {\bf M. Farrokhi D. G.} % % \medskip \noindent % % {\bf An Identity Generator: Basic Commutators} % % \vskip 5mm \noindent % % % % We introduce a group theoretical tool on which one can derive a family of identities from sequences that are defined by a recursive relation. As an illustration it is shown that $$\sum_{i=1}^{n-1}F_{n-i}F_i^2 ={1\over2}\sum_{i=1}^n(-1)^{n-i}(F_{2i}-F_i) ={F_{n+1}\choose2}-{F_n\choose2}, $$ where $\{F_n\}$ denotes the sequence of Fibonacci numbers. \bye .