\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym %\def\frac#1 #2 {{#1\over #2}} \def\emph#1{{\it #1}} \def\em{\it} \nopagenumbers \noindent % % {\bf D.D. Olesky, Bryan Shader and P. van den Driessche} % % \medskip \noindent % % {\bf Permanents of Hessenberg (0,1)-matrices} % % \vskip 5mm \noindent % % % % Let $P\left( m,n\right) $ denote the maximum permanent of an $n$-by-$n$ lower Hessenberg $(0,1) $-matrix with $m$ entries equal to 1. A ``staircased'' structure for some matrices achieving this maximum is obtained, and recursive formulas for computing $P\left( m,n\right) $ are given. This structure and results about permanents are used to determine the exact values of $P\left( m,n\right) $ for $n \leq m \leq 8n/3$ and for all $\hbox{nnz}(H_n)-\hbox{nnz}(H_{\lfloor n/2 \rfloor}) \leq m \leq \hbox{nnz}(H_n)$, where $\hbox{nnz}(H_n)=(n^2+3n-2)/2$ is the maximum number of ones in an $n$-by-$n$ Hessenberg $(0,1)$-matrix. \bye .