\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym %\def\frac#1 #2 {{#1\over #2}} \def\emph#1{{\it #1}} \def\em{\it} \nopagenumbers \noindent % % {\bf Geoffrey McKenna} % % \medskip \noindent % % {\bf Isomorphism Classes of Maximal Intersecting Uniform Families Are Few} % % \vskip 5mm \noindent % % % % Denote by $f(k, m)$ the number of isomorphism classes of maximal intersecting $k$-uniform families of subsets of $[m]$. In this note we prove the existence of a constant $f(k)$ such that $f(k, m) \leq f(k)$ for all values of $m$. \bye .