\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym %\def\frac2{{#1\over #2}} \def\emph#1{{\it #1}} \def\em{\it} \nopagenumbers \noindent % % {\bf John D. Dixon } % % \medskip \noindent % % {\bf Asymptotics of Generating the Symmetric and Alternating Groups} % % \vskip 5mm \noindent % % % % The probability that a random pair of elements from the alternating group $A_{n}$ generates all of $A_{n}$ is shown to have an asymptotic expansion of the form $1-1/n-1/n^{2}-4/n^{3}-23/n^{4}-171/n^{5}-...~$. \ This same asymptotic expansion is valid for the probability that a random pair of elements from the symmetric group $S_{n}$ generates either $A_{n}$ or $S_{n}$. Similar results hold for the case of $r$ generators ($r>2$). \bye .