\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym %\def\frac2{{#1\over #2}} \def\emph#1{{\it #1}} \def\em{\it} \nopagenumbers \noindent % % {\bf Noga Alon, Michael Krivelevich, Joel Spencer and Tibor Szab\'o} % % \medskip \noindent % % {\bf Discrepancy Games} % % \vskip 5mm \noindent % % % % We investigate a game played on a hypergraph $H=(V,E)$ by two players, Balancer and Unbalancer. They select one element of the vertex set $V$ alternately until all vertices are selected. Balancer wins if at the end of the game all edges $e\in E$ are roughly equally distributed between the two players. We give a polynomial time algorithm for Balancer to win provided the allowed deviation is large enough. In particular, it follows from our result that if $H$ is $n$-uniform and has $m$ edges, then Balancer can achieve having between $n/2-\sqrt{\ln(2m)n/2}$ and $n/2+\sqrt{\ln(2m)n/2}$ of his vertices on every edge $e$ of $H$. We also discuss applications in positional game theory. \bye .