\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym \nopagenumbers \noindent % % {\bf Masao Ishikawa, Hiroyuki Kawamuko and Soichi Okada} % % \medskip \noindent % % {\bf A Pfaffian--Hafnian Analogue of Borchardt's Identity} % % \vskip 5mm \noindent % % % % We prove $$ {\rm Pf}\! \left( { x_i - x_j \over (x_i + x_j)^2 } \right)_{1 \le i, j \le 2n} = \prod_{1 \le i < j \le 2n}{ x_i - x_j \over x_i + x_j } {\rm Hf}\! \left( { 1 \over x_i + x_j } \right)_{1 \le i, j \le 2n} $$ (and its variants) by using complex analysis. This identity can be regarded as a Pfaffian--Hafnian analogue of Borchardt's identity and as a generalization of Schur's identity. \bye .