\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym \nopagenumbers \noindent % % {\bf Thomas Lam and Jacques Verstra\"{e}te} % % \medskip \noindent % % {\bf A Note on Graphs Without Short Even Cycles} % % \vskip 5mm \noindent % % % % In this note, we show that any $n$-vertex graph without even cycles of length at most $2k$ has at most ${1\over2}n^{1 + 1/k} + O(n)$ edges, and polarity graphs of generalized polygons show that this is asymptotically tight when $k \in \{2,3,5\}$. \bye .