\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym \nopagenumbers \noindent % % {\bf Anders Bj\"orner and Jonathan David Farley} % % \medskip \noindent % % {\bf Chain Polynomials of Distributive Lattices are 75\% Unimodal} % % \vskip 5mm \noindent % % % % It is shown that the numbers $c_i$ of chains of length $i$ in the proper part $L\setminus\{0,1\}$ of a distributive lattice $L$ of length $\ell +2$ satisfy the inequalities $$c_0<\ldots\ldots>c_{\ell}.$$ This proves 75\% of the inequalities implied by the Neggers unimodality conjecture. \bye .