\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym %\def\frac#1 #2 {{#1\over #2}} \def\emph#1{{\it #1}} \def\em{\it} \nopagenumbers \noindent % % {\bf M. Kano and Qinglin Yu} % % \medskip \noindent % % {\bf Pan-Factorial Property in Regular Graphs} % % \vskip 5mm \noindent % % % % Among other results, we show that if for any given edge $e$ of an $r$-regular graph $G$ of even order, $G$ has a 1-factor containing $e$, then $G$ has a $k$-factor containing $e$ and another one avoiding $e$ for all $k$, $1 \leq k \leq r-1$. \bye .