\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym \def\frac#1#2{{#1\over #2}} \def\emph#1{{\it #1}} \def\em{\it} \nopagenumbers \noindent % % {\bf B\'{e}la Bollob\'{a}s and Vladimir Nikiforov} % % \medskip \noindent % % {\bf The Sum of Degrees in Cliques} % % \vskip 5mm \noindent % % % % For every graph $G,$ let $$ \Delta_{r}\left(G\right) =\max\left\{ \sum_{u\in R}d\left( u\right) :R\hbox{ is an }r\hbox{-clique of }G\right\} $$ and let $\Delta_{r}\left( n,m\right) $ be the minimum of $\Delta_{r}\left( G\right)$ taken over all graphs of order $n$ and size $m$. Write $t_{r}\left( n\right) $ for the size of the $r$-chromatic Tur\'{a}n graph of order $n$. Improving earlier results of Edwards and Faudree, we show that for every $r\geq2,$ if $m\geq t_{r}\left( n\right)$, then $$ \Delta_{r}\left( n,m\right) \geq\frac{2rm}{n},\eqno{(1)} $$ as conjectured by Bollob\'{a}s and Erd\H{o}s. It is known that inequality (1) fails for $m0,$ there is $\delta>0$ such that if $m>t_{r}\left( n\right) -\delta n^{2}$ then $$ \Delta_{r}\left( n,m\right) \geq\left( 1-\varepsilon\right) \frac{2rm}{n}. $$ \bye .