\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym %\def\frac2{{#1\over #2}} \def\emph#1{{\it #1}} \def\em{\it} \nopagenumbers \noindent % % {\bf Tomasz Dzido, Andrzej Nowik and Piotr Szuca} % % \medskip \noindent % % {\bf New Lower Bound for Multicolor Ramsey Numbers for Even Cycles} % % \vskip 5mm \noindent % % % % For given finite family of graphs $G_{1}, G_{2}, \ldots , G_{k}, k \geq 2$, the {\it multicolor Ramsey number} $R(G_{1}, G_{2}, \ldots , G_{k})$ is the smallest integer $n$ such that if we arbitrarily color the edges of the complete graph on $n$ vertices with $k$ colors then there is always a monochromatic copy of $G_{i}$ colored with $i$, for some $1 \leq i \leq k$. We give a lower bound for $k-$color Ramsey number $R(C_{m}, C_{m}, \ldots , C_{m})$, where $m \geq 4$ is even and $C_{m}$ is the cycle on $m$ vertices. \bye .