\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym \nopagenumbers \noindent % % {\bf Peter Keevash} % % \medskip \noindent % % {\bf The Tur\'an Problem for Hypergraphs of Fixed Size} % % \vskip 5mm \noindent % % % % We obtain a general bound on the Tur\'an density of a hypergraph in terms of the number of edges that it contains. If ${\cal F}$ is an $r$-uniform hypergraph with $f$ edges we show that $$\pi({\cal F}) < {f-2\over f-1} - \big(1+o(1)\big)(2r!^{2/r}f^{3-2/r})^{-1},$$ for fixed $r \geq 3$ and $f \rightarrow \infty$. \bye .