\magnification=1200 \hsize=4in \overfullrule=0pt \input amssym \nopagenumbers \noindent % % {\bf Mark A. Shattuck and Carl G. Wagner} % % \medskip \noindent % % {\bf Parity Theorems for Statistics on Domino Arrangements} % % \vskip 5mm \noindent % % % % We study special values of Carlitz's $q$-Fibonacci and $q$-Lucas polynomials $F_n(q,t)$ and $L_n(q,t)$. Brief algebraic and detailed combinatorial treatments are presented, the latter based on the fact that these polynomials are bivariate generating functions for a pair of statistics defined, respectively, on linear and circular domino arrangements. \bye .