\magnification=1200 \hsize=4in \overfullrule=0pt \nopagenumbers \noindent % % {\bf Tom Bohman, Colin Cooper, Alan Frieze, Ryan Martin and Mikl\'os Ruszink\'o} % % \medskip \noindent % % {\bf On Randomly Generated Intersecting Hypergraphs} % % \vskip 5mm \noindent % % % % Let $c$ be a positive constant. We show that if $r=\lfloor{cn^{1/3}}\rfloor$ and the members of ${[n]\choose r}$ are chosen sequentially at random to form an intersecting hypergraph then with limiting probability $(1+c^3)^{-1}$, as $n\to\infty$, the resulting family will be of maximum size ${n-1\choose r-1}$. \bye .