%------------------------------------------------------------------------------ % Which version of paper: second % Marjan Adib, Department of Mathematics and computer science, Amirkabir University of technology, P. O. Box 15914, Tehran 91775, Iran, madib@aut.ac.ir % Here please write the date of submission of paper or its revisions. \documentclass[12pt, reqno]{amsart} \usepackage{amsmath, amsthm, amscd, amsfonts, amssymb, graphicx, color} \usepackage[bookmarksnumbered, colorlinks, plainpages]{hyperref} \usepackage[mathscr]{eucal} \usepackage{amssymb} \usepackage{amsxtra} \usepackage{bm} \textheight 22.5truecm \textwidth 14.5truecm \setlength{\oddsidemargin}{0.35in}\setlength{\evensidemargin}{0.35in} \setlength{\topmargin}{-.5cm} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{xca}[theorem]{Exercise} \newtheorem{problem}[theorem]{Problem} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \numberwithin{equation}{section} %------------------------------------------------------------------------------ % \newcommand{\QM}{{\it QM}} \newcommand{\QMr}{{\it QM_{r}}} \newcommand{\QMl}{{\it QM_{l}}} \newcommand{\Mr}{{\it M_{r}}} \newcommand{\Ml}{{\it M_{l}}} % %------------------------------------------------------------------------------ \begin{document} \setcounter{page}{6} \noindent\parbox{2.85cm}{\includegraphics*[keepaspectratio=true,scale=1.75]{BJMA.jpg}} \noindent\parbox{4.85in}{\hspace{0.1mm}\\[1.5cm]\noindent Banach J. Math. Anal. 5 (2011), no. 2, 6--14\\ $\frac{\rule{4.55in}{0.05in}}{{}}$\\ {\footnotesize \textcolor[rgb]{0.65,0.00,0.95}{\textsc{\textbf{\large{B}}anach \textbf{\large{J}}ournal of \textbf{\large{M}}athematical \textbf{\large{A}}nalysis}}\\ ISSN: 1735-8787 (electronic)\\ \textcolor[rgb]{0.00,0.00,0.84}{\textbf{www.emis.de/journals/BJMA/ }}\\ $\frac{{}}{\rule{4.55in}{0.05in}}$}\\[.5in]} \title[Quasi-multipliers]{Quasi-multipliers of the dual of a Banach algebra} \author[M. Adib, A. Riazi, J. Bra\v{c}i\v{c}]{M. Adib$^1$, A. Riazi$^2$$^{*}$ and J. Bra\v{c}i\v{c}$^3$} \address{$^{1, 2}$ Department of Mathematics and Computer Science, Amirkabir University of Technology, P. O. Box 15914, Tehran 91775, Iran.} \email{\textcolor[rgb]{0.00,0.00,0.84}{madib@aut.ac.ir}} \email{\textcolor[rgb]{0.00,0.00,0.84}{riazi@aut.ac.ir}} \address{$^{3}$ IMFM, University of Ljubljana, Jadranska ul. 19, SI-1000, Ljubljana, Slovenia.} \email{\textcolor[rgb]{0.00,0.00,0.84}{janko.bracic@fmf.uni-lj.si}} \dedicatory{{\rm Communicated by M. Bre\v{s}ar}} \subjclass[2010]{Primary 47B48; Secondary 46H25.} \keywords{Quasi-multiplier, multiplier, Banach algebra, second dual, Arens regularity.} \date{Received: 13 July 2010; Revised: 9 September; Accepted: 8 October 2010. \newline \indent $^{*}$ Corresponding author} \begin{abstract} {In this paper we extend the notion of quasi-multipliers to the dual of a Banach algebra $A$ whose second dual has a mixed identity. We consider algebras satisfying weaker condition than Arens regularity. Among others we prove that for an Arens regular Banach algebra which has a bounded approximate identity the space $QM_{r}(A^{*})$ of all bilinear and separately continuous right quasi-multipliers of $A^{*}$ is isometrically isomorphic to $A^{**}.$ We discuss the strict topology on $QM_{r}(A^{*})$ and apply our results to $C^{*}-$algebras and to the group algebra of a compact group.} \end{abstract} \maketitle \vspace{0.5in} \end{document} %------------------------------------------------------------------------------ % End of journal.tex %------------------------------------------------------------------------------ .