%------------------------------------------------------------------------------ % Which version of paper: Here please write first, second, .... % Here please write the corresponding author and his/her e-mail. % Here please write the date of submission of paper or its revisions. %------------------------------------------------------------------------------ % \documentclass[12pt, reqno]{amsart} \usepackage{amsmath, amsthm, amscd, amsfonts, amssymb, graphicx, color} \usepackage[bookmarksnumbered, colorlinks, plainpages]{hyperref} \textheight 22.5truecm \textwidth 14.5truecm \setlength{\oddsidemargin}{0.35in}\setlength{\evensidemargin}{0.35in} \setlength{\topmargin}{-.5cm} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{xca}[theorem]{Exercise} \newtheorem{problem}[theorem]{Problem} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \numberwithin{equation}{section} \begin{document} \setcounter{page}{49} \noindent\parbox{2.85cm}{\includegraphics*[keepaspectratio=true,scale=1.75]{BJMA.jpg}} \noindent\parbox{4.85in}{\hspace{0.1mm}\\[1.5cm]\noindent Banach J. Math. Anal. 3 (2009), no. 2, 49--54\\ $\frac{\rule{4.55in}{0.05in}}{{}}$\\ {\footnotesize \textcolor[rgb]{0.65,0.00,0.95}{\textsc{\textbf{\large{B}}anach \textbf{\large{J}}ournal of \textbf{\large{M}}athematical \textbf{\large{A}}nalysis}}\\ ISSN: 1735-8787 (electronic)\\ \textcolor[rgb]{0.00,0.00,0.84}{\textbf{http://www.math-analysis.org }}\\ $\frac{{}}{\rule{4.55in}{0.05in}}$}\\[.5in]} \title[$\ell_2$-subspaces of $L_p$]{Good $\ell_2$-subspaces of $L_p$, $p>2$} \author[D. Alspach]{Dale E. Alspach} \address{Department of Mathematics, Oklahoma State University, Stillwater, OK 74078, USA.} \email{\textcolor[rgb]{0.00,0.00,0.84}{alspach@math.okstate.edu}} \dedicatory{{\rm Communicated by K. Jarosz}} \subjclass[2000]{Primary 46B20; Secondary 46E30.} \keywords{types, projection, Central Limit Theorem.} \date{Received: 30 December 2008; Accepted: 13 May 2009.} \begin{abstract} We give an alternate proof of the result due to Haydon, Odell and Schlumprecht that subspaces of $L_p$, $p>2$, which are isomorphic to $\ell_2$ contain subspaces which are well isomorphic to $\ell_2$ and well complemented. \end{abstract} \maketitle \vspace{2.5in} \end{document} .