\documentclass[12pt, reqno]{amsart} \usepackage{amsmath, amsthm, amscd, amsfonts, amssymb, graphicx, color} \usepackage[bookmarksnumbered, plainpages]{hyperref} \textheight 22.5truecm \textwidth 14.5truecm \setlength{\oddsidemargin}{0.35in}\setlength{\evensidemargin}{0.35in} \setlength{\topmargin}{-.5cm} \newtheorem{theorem}{Theorem}[section] \newtheorem*{theorema}{Theorem A} \newtheorem*{theoremb}{Theorem B} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{xca}[theorem]{Exercise} \newtheorem{problem}[theorem]{Problem} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \newtheorem{remarks}[theorem]{Remarks} \numberwithin{equation}{section} \newcommand{\D}{\mathcal{D}} \newcommand{\R}{\mathcal{R}} \newcommand{\N}{\mathcal{N}} \newcommand{\Hi}{\mathcal{H}} \newcommand{\G}{\mathcal{G}} \newcommand{\beq}{\begin{equation}} \newcommand{\eeq}{\end{equation}} \newcommand{\I}{\mathcal{I}} \newcommand{\T}{\mathcal{T}} \newcommand{\eps}{\epsilon} \newcommand{\bal}{\begin{align}} \newcommand{\eal}{\end{align}} \newcommand{\benu}{\begin{enumerate}} \newcommand{\eenu}{\end{enumerate}} \begin{document} \setcounter{page}{42} \noindent\parbox{2.85cm}{\includegraphics*[keepaspectratio=true,scale=1.75]{BJMA.jpg}} \noindent\parbox{4.85in}{\hspace{0.1mm}\\[1.5cm]\noindent Banach J. Math. Anal. 2 (2008), no. 2, 42--58 \\ $\frac{\rule{4.55in}{0.05in}}{{}}$\\ {\footnotesize \textcolor[rgb]{0.65,0.00,0.95}{\textsc{\textbf{\large{B}}anach \textbf{\large{J}}ournal of \textbf{\large{M}}athematical \textbf{\large{A}}nalysis}}\\ ISSN: 1735-8787 (electronic)\\ \textcolor[rgb]{0.00,0.00,0.84}{\textbf{http://www.math-analysis.org }}\\ $\frac{{}}{\rule{4.55in}{0.05in}}$}\\[.5in]} \title [Sum Inequalities in $\mathbf{L}^{\mathbf{p}}$ spaces]{Some weighted sum and product inequalities in $\mathbf{L}^{\mathbf{p}}$ spaces and their applications} \author[R.C. Brown ]{R. C. Brown} \address{Department of Mathematics, University of Alabama-Tuscaloosa, AL 35487-0350, USA} \email{\textcolor[rgb]{0.00,0.00,0.84}{dicbrown@bama.ua.edu}} \dedicatory{This paper is dedicated to Professor Joseph E. Pe\v{c}ari\'{c}\\ \vspace{.5cm} {\rm Submitted by Th. M. Rassias}} \subjclass[2000]{Primary: 26D10, 47A30, 34B24; Secondary 47E05} \keywords{Weighted sum inequalities, weighted product inequalities, Sturm Liouville operators, limit-point conditions, relatively bounded perturbations} \date{Received: 12 April 2008; Accepted 21 April 2008.} \begin{abstract} We survey some old and new results concerning weighted norm inequalities of sum and product form and apply the theory to obtain limit-point conditions for second order differential operators of Sturm-Liouville form defined in $L^p$ spaces. We also extend results of Anderson and Hinton by giving necessary and sufficient criteria that perturbations of such operators be relatively bounded. Our work is in part a generalization of the classical Hilbert space theory of Sturm-Liouville operators to a Banach space setting. \end{abstract} \maketitle \section{Introduction} Let $w, v_0, v_1$ be positive a.e. measurable or ``weights'' on the interval $I_a=[a,\infty)$, $a>-\infty$. We are interested in obtaining conditions which guarantee the validity of the weighted ``sum" inequality: \begin{eqnarray}\label{Sumineq1} \int_{I_a} w| y^{(j)}| ^p \leq K_1(\epsilon )\int_{I_a} v_0|y|^p +\epsilon \int_{I_a} v_1|y^{(n)}|^p \end{eqnarray} for $0\le j0$, and for $i=0,1$ let $f_i(t, \eps):=(s_i(t)-t)/\epsilon$ where \begin{eqnarray}\label{f} s_i(t)=\min\{t+\eps, \sup\{z>t: 3v_i(t)/2 \ge v_i(u)\ge v_i(t)/2 \text{\ for\ } u\in (t, z]\}. \end{eqnarray} Define $s_2(t)$ and $f_2(t, \eps)$ similarly for $w$ and set $f^\ast(t, \eps)=\min\{f_i(t, \epsilon)\}$, $i=0, 1, 2$. With this construction of $f^\ast$ \eqref{wtcond3} follows. To prove the second assertion Set $$ s_{\ast,0}:=a <\dots< s_{\ast,j+1}:=s_{\ast,j}+\epsilon f_\ast(s_{\ast,j},\eps)\equiv s_0(s_{\ast,j}) $$ and suppose that $\{s_{\ast,j}\}$ converges to $\bar{s}_\ast<\infty$. We show that for all sufficiently large $j$ and for $u\in (s_{\ast,j}, \bar{s}_\ast]$ that $3v_i(s_{\ast,j})/2 \ge v_i(u)\ge v_i(s_{\ast,j})/2$. If this is not so then for every $j$ there is a $k>j$ and a $u^\ast \in [s_{\ast,k}, \bar{s}_\ast]$ such that for one of the weights, say, $v_0$ either (i) $v_0(s_{\ast,k})/2>v_0(u^\ast)$ or (ii) $3v_0(s_{\ast,k})/2\mu>0$ there is a $j$ such that for any $k>j$ and all $u\in [s_{\ast,k},\bar{s}_\ast]$ we have that $$ (1-\mu)v_0(\bar{s}_\ast)0$ possibly depending on $\epsilon$ so that \begin{eqnarray}\label{2.2} K_2\le \frac{f(s)}{f(t)}, \frac{v_1(s)}{v_1(t)}, \frac{v_0(s)}{v_0(t)}\le K_3 \end{eqnarray} on the intervals $J_{t,\epsilon}$ for sufficiently small $\epsilon>0$. \end{lemma} \noindent \begin{proof} First, we note that \begin{align} |f'|&= \left|\left((v_1/v_0)^{1/np}\right)'\right|= \left|(1/np)(v_1/v_0)^{1/np-1}v_0^{-2}(v_0v_1'-v_1v_0')\right|\notag\\ &\le (1/np)v_1^{1/np-1}v_0^{-1/np}|v_1'|+ (1/np)(v_1/v_0)^{1/np-1}v_0^{-2}v_1|v_0'|\notag\\ &\le K/np+1.\notag \end{align} Hence for $ta$ and consider the function \begin{align} S(t)&:=(\epsilon f(t))^{-1}\int_t^{t+\epsilon f(t)}wv_1^{-j/n}v_0^{j/n-1}\notag\\ &=(\epsilon f(t))^{-1}\int_t^{t+\epsilon f(t)}wv_1^{-j/n} v_0^{j/n-1}|H^{(j)}_{j,t}|^p\notag\\ &\approx (\epsilon f(t))^{-1}(v_1^{-j/n}v_0^{j/n-1})(t)\notag\\ &\quad \times\int_t^{t+\epsilon f(t)}w|H^{(j)}_{j,t}|^p.\notag \end{align} Therefore if \eqref{Sumineq2} holds we have \begin{eqnarray*} S(t)&=&\text{O}\Big\{(\epsilon f(t))^{-1}(v_1^{-j/n}v_0^{j/n-1})(t)\Big[\eps^{-jp}\int_{t-2\epsilon f(t)}^{t+2\epsilon f(t)}v_0|H_{j,t}|^p\\&&+\eps^{(n-j)p}\int_{t-2\epsilon f(t)}^{t+2\epsilon f(t)}v_1|H_{j,t}^{(n)}|^p\Big]\Big\}. \end{eqnarray*} However \begin{align} &(\epsilon f(t))^{-1}(v_1^{-j/n}v_0(t)^{j/n-1})(t)\left(\int_{t-2\epsilon f(t)}^{t+2\epsilon f(t)}v_0|H_{j,t}|^p\right)\notag\\ &\quad \approx f(t)^{-jp}(\epsilon f(t))^{-1} \left(\int_{t-2\epsilon f(t)}^{t+2\epsilon f(t)}|H_{j,t}|^p\right)\notag\\ &\quad=\int_{-2}^2|H_j(u)|^p,\notag \end{align} and \begin{align} &(\epsilon f(t))^{-1}(v_1^{-j/n}v_0^{j/n-1})(t)\left(\int_{t-2\epsilon f(t)}^{t+2\epsilon f(t)}v_1|H^{(n)}_{j,t}|^p\right)\notag\\ &\quad \approx f(t)^{-jp}(v_1/v_0)(\epsilon f(t))^{-1}) \left(\int_{t-2\epsilon f(t)}^{t+2\epsilon f(t)}|H_{j,t}^{(n)}|^p\right)\notag\\ &\quad =\int_{-2}^2|H_j^{(n)}(u)|^p.\notag \end{align} Putting these two estimates together shows that $S(t)$ is uniformly bounded for $t\in I_a$ and $\epsilon\in (0, \epsilon_0]$ which is equivalent to \eqref{S} as was to be proved. \qed \medskip Our next result extends an inequality of Anderson and Hinton \cite[Theorem 3.1]{AH} from $L^2(I_a)$ to the $L^p$ case. \begin{corollary} \label{col1} Suppose $v_0, v_1\in L^p_{\text{loc}}(I_a)$, $v_1^{1/2}|v_0'|\le 2v_0^{3/2}$, and $|v_1'|\le (K/p)\sqrt{v_0v_1}$ then the sum inequality \begin{eqnarray}\label{cor} \Vert v_1'y'\Vert_{p, I_a}\le K(\epsilon)\Vert v_0y\Vert_{p, I_a}+\epsilon \Vert v_1y''\Vert_{p, I_a} \end{eqnarray} holds for all $10$. \end{corollary} \noindent \begin{proof} Here the weights $(v_1')^p, v_0^p$, and $v_1^p$ replace the weights $w, v_0$, and $v_1$. The conditions on $v_1'$ and $v_0'$ are equivalent to (\ref{2.0}) for this choice of weights. $f(t)$ is given by $(v_1^p/v_0^p)^{1/2p}\equiv \sqrt{v_1/v_0}$. We have also that $$ S_1(t)\equiv S_2(t)=\eps^{-1}\sqrt{\frac{v_0}{v_1}}\int_t^{t+\epsilon \sqrt{v_1/v_0}} |v_1'|^p(v_1v_0)^{-p/2}\le (K/p)^p. $$ (\ref{cor}) follows by Theorem \ref{theorem1}. \end{proof} \begin{example}\label{ex2} Suppose $w=v_0=v_1$ and $|v_1'|\le npv_1$. Then $f=1$ and $S_1(\infty)=S_2(\infty)=1$. By Theorem \ref{theorem1} we have the inequality \begin{eqnarray} \label{v1} \int_{I_a} w|y^{(j)}|^p\le K_1\left(\epsilon^{-jp}\int_{I_a}w|y|^p+ \epsilon^{(n-j)p}\int_{I_a}w|y^{(n)}|^p\right). \end{eqnarray} In this example unlike Examples \ref{ex2.1} and \ref{ex3} since the inequality holds for all $\eps>0$. \end{example} \begin{remark} If a sum inequality of the form \eqref{Sumineq2} holds for arbitrary $\epsilon>0$ we can minimize the right-hand side of the inequality as a function of $\epsilon$ provided $j\ne 0$ and $\int_{I_a}v_1|y^{(n)}|^p\ne 0$. This procedure applied to \eqref{v1} in the previous example will yield the product inequality \begin{eqnarray*} \int_{I_a} w|y^{(j)}|^p\le K_2\left(\int_{I_a}w|y|^p\right)^\frac{n-j}{n}\left( \int_{I_a}w|y^{(n)}|^p\right)^\frac{j}{n}. \end{eqnarray*} Note that $v_1$ can be taken as e$^{\pm bt}$ where $01$. For information on these more general cases see \cite{BHP}, \cite{BHCAN}, \cite{BHLONDON}, \cite{M}, and \cite{GI8}. There are additionally other approaches to weighted norm inequalities similar to \eqref{Sumineq2}. See for example Wojteczek-Laszczak \cite{Woj} and Kwong and Zettl \cite{KZ3}. \end{remark} \section{Some Applications to Relative Boundedness and Limit-point conditions for differential operators in $L^p$ spaces} In \cite{GI8} we gave applications of sum and product inequalities to various spectral theoretic problems involving Sturm-Liouville operators in $L^2(I_a)$. In this section we look at applications to operators determined by expressions of Sturm-Liouville form but defined in $L^p$ spaces. We first require some preliminary definitions and abstract results. In what follows $\Vert (\cdot)\Vert$ will denote the norm in an arbitrary Banach space. \begin{definition} Suppose $A$ and $T$ are operators from a Banach space $X$ to a Banach space $Y$. Then $A$ is said to be $T$ bounded if the domain of $T$ is contained in the domain of $A$ and the inequality \begin{eqnarray} \label{TBd} \Vert A(x)\Vert\le K(\Vert x\Vert+\Vert T(x)\Vert) \end{eqnarray} holds for all $x$ in the domain of $T$. Furthermore $A$ is said to have $T$ bound 0 if $A$ is $T$ bounded and the inequality \eqref{TBd} has the form $$ \Vert A(x)\Vert\le K(\epsilon)\Vert x\Vert+\epsilon \Vert T(x)\Vert) $$ for all $\epsilon\in (0, \epsilon_0)$ for some $\epsilon_0 \in (0,\infty)$. \end{definition} \begin{lemma}\label{lemma2} Suppose $A, B, C$, and $L$ are operators from a Banach space $X$ to a Banach space $Y$. Suppose that $A$ is $L$-bounded and $B, C$ are $L$-bounded with $L$ bound 0. Then $A$ is $L+B+C$ bounded. \end{lemma} \begin{proof} By the triangle inequality \begin{eqnarray}\label{L+1} \Vert x\Vert+ \Vert L(x)\Vert\le \Vert x\Vert+ \Vert(L+B+C)(x)\Vert +\Vert B(x)\Vert+\Vert C(x)\Vert. \end{eqnarray} >From the hypotheses on $B$ and $C$ we also have the estimates \begin{align} \Vert B(x)\Vert&\le K_1(\epsilon/2)\Vert x\Vert+ (\epsilon/2) \Vert L(x)\Vert\label{B}\\ \Vert C(x)\Vert&\le K_2(\epsilon/2)\Vert x\Vert+ (\epsilon/2) \Vert L(x)\Vert\label{C}. \end{align} Substituting (\ref{B}) and (\ref{C}) into (\ref{L+1} gives that \begin{eqnarray}\label{L+B+C} (1-\epsilon)(\Vert x\Vert + \Vert L(x)\Vert)\le (1+ K_1(\epsilon/2)+K_2(\epsilon/2))\Vert x\Vert+ \Vert(L+B+C)(x)\Vert. \end{eqnarray} But since $A$ is $L$ bounded $\Vert A(x)\Vert\le K(\Vert x\Vert+\Vert L(x)\Vert)$. Combining this with (\ref{L+B+C}) yields that $$ \Vert A(x)\Vert\le K(1-\epsilon)^{-1}[(1+ K_1(\epsilon/2)+K_2(\epsilon/2))\Vert x\Vert+ \Vert(L+B+C)(x)\Vert]. $$ \end{proof} \begin{lemma}\label{lemma4} Let $A$, $B$, $C$ and $L$ be operators from a Banach space $X$ to a Banach space $Y$. Suppose the inequalities \begin{align} \Vert A(y)\Vert&\le K(\epsilon)\Vert B(y)\Vert+ \epsilon\Vert L(y)\Vert)\label{2.8}\\ \Vert B(y)\Vert&\le K(\epsilon)\Vert C(y)\Vert+\epsilon \Vert L(y)\Vert\label{2.9}\\ \Vert C(y)\Vert&\le K(\Vert y\Vert+\Vert T(y)\Vert)\label{2.10} \end{align} where $T(y)=(A+B+L)(y)$. Then $A$ is $T$ bounded with relative bound $0$. \end{lemma} \noindent \begin{proof} By \eqref{2.9} and the triangle inequality $$ \Vert B(y)\Vert\le K(\epsilon)\Vert C(y)\Vert+\epsilon\Vert(L+B)(y)\Vert+\epsilon\Vert B(y)\Vert. $$ Hence, $$ \Vert B(y)\Vert\le K(\epsilon)(1-\epsilon)^{-1}\Vert C(y)\Vert+\epsilon(1-\epsilon)^{-1}\Vert(L+B)(y)\Vert. $$ Substituting this into (\ref{2.8}) after noting again that $\Vert L(y)\Vert\le \Vert(L+B)(y)\Vert+\Vert B(y)\Vert$ gives the inequality \begin{eqnarray}\label{2.11} \Vert A(y)\Vert\le K(\epsilon)(1+\epsilon(1-\epsilon)^{-1})\Vert C(y)\Vert+\epsilon^2(1-\epsilon)^{-1}\Vert(L+B)(y)\Vert. \end{eqnarray} Finally, \begin{align} \Vert (L+B)(y)\Vert&\le \Vert T(y)+\Vert C(y)\Vert\notag\\ &\le K\Vert y\Vert+ (K+1)\Vert T(y)\notag\Vert. \end{align} Substitution into (\ref{2.11}) now gives the desired conclusion. \end{proof} Given a Banach space $X$ with dual $X^\ast$, $[x, x^\ast]$ signifies the complex conjugate $\overline{{x^\ast}(x)}$ for $x\in X$ and $x^\ast\in X^\ast$. If $T$ is an operator on $X$ we consider the set of pairs $G(T^\ast):=(z, z')\in X\times X^\ast$ such that \begin{eqnarray}\label{Green} [T(y),z]=[y, z']. \end{eqnarray} The density of $\mathcal{D}(T)$ implies that \eqref{Green} determines an operator $T^\ast$ called the \emph{adjoint} of $T$ such that $T^\ast(z)=z'$. If $T: X^\ast\to X^\ast$ has a domain $\mathcal{D}(T)$ which is {\it total} over $X$ (i.e., $[x, x^\ast]=0$ for a fixed $x\in X$ and all $x^\ast\in \mathcal{D}(T) \Rightarrow x=0$) the set $G(^\ast T)$ of pairs $(y',y)\in X\times X$ satisfying $$ [y', z]=[y, T(z)] $$ also determines an operator which we denote by $^\ast T$ and call the adjoint of $T$ in $X$.\footnote{Goldberg calls this operator the preconjugate of $T$. Its properties are studied in \cite[VI.I]{Gold}.} Both $T^\ast$ and $^\ast T$ are closed and $[T(y), z]=[y, T^\ast(z)]$ or $[^\ast T(y), z]=[y, T(z)]$ for all $y\in \mathcal{D}(T)$ or $\D(^\ast T)\subset X$ and $z\in \mathcal{D}(T^\ast)$ or $\D(T) \subset X^\ast$ . In the particular case $X=L^p(I_a)$ and $X^\ast=L^{p'}(I_a)$ where $1\le p\le\infty$ the pairing $[(\cdot), (\cdot)]$ on $L^p(J)\times L^{p'}(J)$ for some interval $J$ is given by $[y,z]_J:=\int_Jy\bar{z}$. Consider now the differential expression $M[y]:=-(ry')'+qy$. Assume that $r> 0$, $r\in C^1(I_a)$, and $q\in C(I_a)$. Define $$ \{y,z\}(t):=r(t)(y(t)\bar{z}'(t)-y'(t)\bar{z}(t)). $$ for $y,z\in AC_{\text{loc}}(I_a)$ and the following operators and domains in $L^p(I_a)$. \begin{definition}\label{def2} For $p\in [1,\infty]$ let let $T'_{0,p}$, $T_p$, $T_{0,p}$, and be the operators with domain and range in $L^p(I_a)$ determined by $M$ on \begin{align} \mathcal{D}'_{0,p}&:=\{y\in C^\infty_0(I_a)\},\notag\\ \mathcal{D}_p&:=\{y\in L^p(I_a): y'\in AC_{\text{loc}}(I_a); M[y]\in L^p(I_a)\},\notag\\ \mathcal{D}_{0,p}&:=\{y\in \mathcal{D}_p: y(a)=y'(a)=0; \lim_{t\to\infty}\{y,z\}(t)=0, \forall z\in \mathcal{D}_{p'}\}.\notag \end{align} \end{definition} \noindent We call $T_{0,p}'$, $T_{0,p}$ respectively the ``preminimal" and ``minimal" operators, and $T_p$ the ``maximal" operator determined by $M$. \noindent \begin{theoremb} If $1\le p<\infty$ the operators $T'_{0,p}$, $T_{0,p}$, and $T_p$ have the following properties: \begin{enumerate} \item[(i)] $T_{0,p}$ and $T_p$ are closed densely defined operators. \item[(ii)] $[T_p(y), z]_{[a,t]}=\{y,z\}(t)-\{y,z\}(a)+ [y, T_{p'}(z)]_{[a,t]}$. \item[(iii)] $T_p^\ast=T_{0, p'}$ and $T_{0,p}^\ast= T_{p'}$. \item[(iv)] $T'_{0,p}$ is closable and $\overline{T'_{0,p}}=T_{0,p}$. \end{enumerate} Moreover, $T_{0,\infty}$ and $T_\infty$ are closed, the closure of $T_{0,\infty}'$ is $T_{0,\infty}$, $^\ast T_{0,\infty}=T_1$, and $^\ast T_\infty= T_{0,1}$. \end{theoremb} \noindent Proofs of (i)--(iii), the last statement, as well as more general results may be found in one of \cite[Chapter VI]{Gold}, \cite{Rota}, or \cite{BC}). The $L^2$ theory is thoroughly treated in Naimark \cite[~\S 17]{Nai}. It is almost certain that by extending the procedure of Naimark given in the $L^2$ case that $q, r$ and $r^{-p'/p}$ need only be locally integrable for Theorem B to hold. However, the verification of this is technically complicated and will be omitted here. \begin{definition} The operators $T_{0,p}$ or $T_p$ are separated if on $\D_{0,p}$ or $\D_p$ $(ry')'\in L^p(I_a)$ \end{definition} \begin{remark} By the triangle inequality the separation of $T_{0,p}$ or $T_p$ is equivalent to $qy\in L^p(I_a)$ on the domains of these operators. The closed graph theorem in turn implies that separation is equivalent to the existence of an inequality of the form $$ \Vert(ry')'\Vert_{p, I_a}+ \Vert qy\Vert_{p, I_a}\le K\{\Vert y\Vert_{p, I_a}+ \Vert M[y]\Vert_{p, I_a}\}. $$ Necessary and sufficient conditions for separation in $L^p$ when $M[y]=-y''+qy$ have been given by Chernyavskaya and Shuster \cite{CS}. However their conditions can be difficult to verify. For $p=2$ various sufficient conditions may be found in \cite{ABH}, \cite{BHsep}, \cite{Hg02}, \cite{EG}. The simplest condition guaranteeing separation for all $p$ is to require that $q$ be essentially bounded. \end{remark} \noindent {\scshape Limit-point Results in $L^p$ spaces.} \begin{definition} We say that $T_p$ is $p$-limit-point ($p$-LP) at $\infty$ if $\lim_{t\to \infty} \{y,z\}(t)=0$ for all $y\in \mathcal{D}_p$ and $z\in \mathcal{D}_{p'}$ \end{definition} \begin{theorem}\label{Limpt} Consider the following conditions: \begin{enumerate} \item[(i)] $T_p$ is $p$-LP. \item[(ii)] There do not exist linearly independent solutions $y_p\in L^p(I_a)$ and $z_{p'}\in L^{p'}(I_a)$ of $M[y]=0$. \item[(iii)] dim\,$\mathcal{D}_p/\mathcal{D}_{0,p}=2$. \end{enumerate} Then (i) and (iii) are equivalent conditions and (i) $\Rightarrow$ (ii). \end{theorem} \noindent \begin{proof} Suppose that (i) is true and that there were linearly independent solutions $y_p\in L^p(I_a)$ and $z_{p'}\in L^{p'}(I_a)$. Let $t\in I_a$ By (ii) of Theorem B $\{y,z\}(t)=\{y,z\}(a)$ and the fact that $T_p$ is $p$-LP we have $$ 0=\lim_{t\to\infty}\{y_p,z_{p'}\}(t)= \{y_p,z_{p'}\}(a)= r^{-1}(a)\{y_p,z_{p'}\}(a). $$ But this is impossible since $r^{-1}\{y,z\}$ is just the Wronskian of of the solutions $y_p, z_{p'}$ and its zero value at $a$ or $t$ contradicts their assumed linear independence. Turning now to (iii), let $\phi_1$ and $\phi_2$ be $C^\infty_0(I_a)$ functions such that $\phi_1(a)=1$, $\phi_1'(a)=0$ and $\phi_2(a)=0$, $\phi_2'(a)=1$. Since $\phi_1, \phi_2\in \mathcal{D}_p$ and are linearly independent, we see that dim\,$\mathcal{D}_p/\mathcal{D}_{0,p}\ge 2$. Suppose there exists $u\in \mathcal{D}_p$ such that $\{\phi_1, \phi_2, u\}$ is linearly independent mod $\mathcal{D}_{0,p}$. Let $h$ be a linear combination of these functions such that $h(a)=h'(a)=0$. Let $G_p$ and $G_{0,p}$ respectively be $\mathcal{D}_p$ or $\mathcal{D}_{0,p}$ endowed with the graph norm. Now the dual $G_p^\ast$ of $G_p$ can be identified with the space of pairs $\xi=(z, z^\ast)$ in $L^{p'}(I_a)\times L^{p'}(I_a)$ such that $\xi(y)$, $y\in G_p$, is given by $$ \int_{I_a} y\bar{z}+\int_{I_a}M[y]\bar{z}^\ast. $$ Since $h\notin G_{0,p}$ and $G_{0,p}$ is closed in $G_p$ there exists an element $\xi\in G_p^\ast$ such that $\xi(h)=1$ and $\xi(y)=0$ for all $y\in G_{0,p}$, implying that $\xi=(-M[z^\ast], z^\ast)$ for some $z\in \mathcal{D}_p$. It follows that \begin{align} 1&=\xi(h)=\int_{I_a}h(-\overline{M[z]} + \int_{I_a} M[h]\bar{z} \notag\\ &=\{h,z\}(\infty),\notag \end{align} contradicting (i). We conclude that dim\,$\mathcal{D}/\mathcal{D}_0=2.$ In the above argument we have shown that (i)$\Rightarrow$ (ii) and that (i)$\Rightarrow$ (iii). It is clear that (iii) $\Rightarrow$ (i). For if $\D_p$ is a two dimensional extension of $\D_{0,p}$ then span$\{\phi_1, \phi_2, \D_{0,p}\}=\D_p$. Since $\phi_1$ and $\phi_2$ have compact support and by the definition of $\D_{0,p}$, (i) will hold. \end{proof} \noindent \begin{remark}\label{plimitpt} For $p\ne 2$ Theorem \ref{Limpt} represents an extension of the well-known limit point concept for differential operators in $L^2(I_a)$. In particular (ii) is a generalization of the fact that if $M$ is $2$-LP at $\infty$ then $M$ has at most one $L^2$ solution. In the limiting case $p=1$, $p'=\infty$, if there is a solution $y$ in $\mathcal{D}_1$ in $L(I_a)$, (ii) says that that there cannot be another solution independent of $y$ which is bounded. As in the Hilbert space case we have also shown that $T_p$ is $p$-limit-point if and only if $\D_p/\D_{0,p}=2$. \end{remark} \begin{remark} If any one of $T_{0,p}$, $T_p$, $T_{0,p'}$ and $T_{p'}$ has closed range then more can be said. Specifically all the other minimal and maximal operators also have closed range. In particular, the minimal operators are one-to-one and have bounded inverses while the maximal operators are surjective and $$ \text{dim}\,(\D_p/\D_{0,p})= \text{dim}\,\N(T_p)+\text{dim}\,\N(T_{p'}). $$ For the proof in a considerably more general setting see Goldberg \cite{Gold} Theorems VI.2.7 and VI.2.11. Furthermore, since the dimensions of both null spaces do not exceed 2 and since as we have seen $\D_p$ is at least a two dimensional extension of $\D_{0,p}$ we have that $$ 2 \le\text{dim}\,(\D_p/\D_{0,p})\le 4. $$ Brown and Cook \cite[Corollary 2.9]{BC} have shown that $T_{0,p}$ defined on $I_a$ has a bounded inverse and thus closed range for $1\le p\le \infty$ if both $\int_{I_a} r^{-1}<\infty$ and $\int_{I_a} q^{-1}<\infty$ \end{remark} \begin{remark} If $q\ge 0$ then $M$ is disconjugate and by by Corollary 6.4 and Theorem 6.4 of Hartman \cite{Hart} there is a fundamental set of of positive linearly independent solutions $y_1$ and $y_2$ of $M[y]=0$, called respectively the principal and nonprincipal solutions, such that $y_1'\le 0$ and $y'>0$ on $I_a$. Additionally, $\lim_{t\to\infty} y_1/y_2=0$. It follows at once in our setting that dim\,$\N(T_p)= \text{dim}\,\N(T_{p'})\le 1$. In \cite{SD} it is furthermore shown that if $r=1$, $q\ge 0$, and there exists $b\in (0,\infty)$ such that \begin{eqnarray}\label{closedrange} \inf_{x\in I_a, x-b>a}\int_{x-b}^{x+b}q>0, \end{eqnarray} then \begin{enumerate} \item[(i)] $T_p$ has closed range. \item[(ii)] dim\,$(\mathcal{D}_p/\mathcal{D}_{0,p})=2$ and dim\,$(R(T_p)/R(T_{0,p})=1$, \item[(iii)] dim\,$\N(T_p)=1$, \item[(iv)] If $y_1$ denotes the principal or ``small" solution of $M[y]=0$ then $y_1\in L^p(I_a)$ for all $p\in [1,\infty]$. \end{enumerate} The condition \eqref{closedrange} was shown by Chernyavskya and Shuster \cite{CS2} to be necessary and sufficient for $T_p$ defined on $\mathbb{R}$ to have a bounded inverse. In the case when $q\ge k>0$ one can show that $M[y]=0$ has exponentially growing and exponentially decaying solutions. Read \cite{Read} has extended this by showing that the same is true if $$ \liminf_{x\to\infty}\int_x^{x+a} q^{1/2}\,dt>0 $$ for some $a>0$. \end{remark} \noindent {\scshape Relative Boundedness for perturbations of Differential Operators in $L^p$ spaces.} \smallskip \noindent The following two results are generalizations to $L^p$ of relative boundedness criteria given by Anderson and Hinton \cite{AH} in the $L^2$ setting. \noindent \begin{theorem}\label{theorem5} Let $A_j: L^p\to L^p$ be given by $\int_{I_a} a_jy^{(j)}$, $j=0,1$, on $\D_p$ where the $a_j$ are locally integrable functions. Let $T_{0,p}$ be the minimal operator in $L^p(I_a)$ determined by $M[y]=-(ry')'+ qy$ and Assume that $|r'|\le (K/p)\sqrt{r}$ and that \begin{eqnarray}\label{qcond} \sup_{t\in I_a}\frac{1}{\sqrt{r}}\int_t^{t+\epsilon\sqrt{r}}|q|^p<\infty. \end{eqnarray} Then the $A_j$ are $T_{0,p}$-bounded if and only if \begin{eqnarray}\label{rcond} \frac{1}{\sqrt{r}}\int_t^{t+\epsilon \sqrt{r}} |a_j|^p r^{-jp/2}<\infty,\quad j=0,1, \end{eqnarray} is bounded on $I_a$. If $T_p$ is $p$-LP at $\infty$ then the $A_j$ are also $T_p$ bounded. \end{theorem} \noindent \begin{proof} This is an application of Theorem \ref{theorem1} and Lemma \ref{lemma2}. Define the operators $L, B, C: L^p(I_a)\to L^p(I_a)$ on $C^\infty_0(I_a)$ by $L(y)=ry''$, $B(y)=r'y'$, and $C(y)=qy$ where $y\in \mathcal{D}_{0,p}$. Then $T'_{0,r}= L+B+C$. Let $f=\sqrt{r}$, and take $v_0=1$, The condition on $r'$ is just the first condition in (\ref{2.0}) with $r^p$ replacing $v_1$. By Theorem \ref{theorem1} the $A_j$ are $L$-bounded or equivalently the sum inequalities $$ \Vert A_j(y)\Vert_{p, I_a}\le K(\Vert y\Vert_{p, I_a}+\Vert ry''\Vert_{p, I_a}),\quad j=0,1, $$ hold if and only if (\ref{rcond}) is true. By Corollary \ref{col1} (with $v_0=1$) $B$ is $L$-bounded with relative bound $0$. Finally, another application of Theorem \ref{theorem1} using \eqref{qcond} gives that $C$ is $L$-bounded with relative bound $0$. The fact that the $A_j$ are $T'_{0,p}$ bounded now now follows from Lemma \ref{lemma2}. A closure argument shows that the $A_j$ are $T_{0,p}$ bounded. Finally, if $T_p$ is $p$-LP at $\infty$, then $T_p$ is a two dimensional extension of $T_{0,p}$ via the functions $\phi_1$ and $\phi_2$. Hence, if $y\in \D_p$, $y=y_0 + z$ where $z=c_1\phi_1+ c_2\phi_2$. Since $A_j$ is $T_0$ bounded and by an elementary inequality we have $$ \Vert A_j(y_0)\Vert_{p, I_a}^p\le K^p2^{p-1}\{\Vert y_0\Vert_{p, I_a}^p+ \Vert T(y_0)\Vert_{p, I_a}^p\}. $$ The same inequality is true for $z$ since the $p$-th root of each side defines two norms on $Z:=\text{span}\,\{\phi_1, \phi_2\}$ and the mapping $j:Z\to Z$ given by $j(z)=z$ is continuous with respect to these norms since $Z$ is finite (2!) dimensional. Hence, \begin{align} \Vert A_j(y_0+z)\Vert_{p,I_a}^p&\le 2^{p-1}[\Vert A_j(y_0)\Vert_{p,I_a}^p+ A_j(z)\Vert_{p,I_a}^p\notag\\ &\le K_1[\Vert y_0\Vert_{p,I_a}^p+ \Vert z\Vert_{p,I_a}^p+ \Vert T(y_0)\Vert_{p,I_a}^p+ \Vert T(z)\Vert_{p,I_a}^p]\notag\\ &\le K_1[\Vert y_0+z\Vert_{p,I_a}^p+ \Vert T(y_0+z)\Vert_{p,I_a}^p]\notag\\ &=K_1\{\Vert y\Vert_{p, I_a}^p+\Vert T(y)\Vert_{p,I_a}^p\}.\notag \end{align} \end{proof} \begin{theorem}\label{theorem3} Suppose that $T_{0,p}$ is separated Additionally suppose that \begin{align} |r'|&\le (K/p)\sqrt{r|q|}\notag\\ |q'|&\le 2|q|^{3/2}r^{-1/2}.\notag \end{align} Let $A_j$, $j=0,1$, be as in Theorem \ref{theorem5}. Then $A_j$ is $T_{0,p}$-bounded with $T_p$-bound $0$ if and only if \begin{eqnarray}\label{2.12} S(t)= \sqrt{\frac{|q|}{r}}\int_t^{t+\epsilon \sqrt{r/q}}|a_j|^pr^{-jp/2}|q|^{p(j-2)/2} \end{eqnarray} is bounded on $I_a$. \end{theorem} \noindent \begin{proof} As before we begin with the $C^\infty_0$ functions. Let $C(y)=qy$, $B(y)= r'y'$ and $L(y)=ry''$. By the hypothesis of separation (\ref{2.10}) holds. By Theorem \ref{theorem1} where $f(t)=(r^p/q^p)^{1/2p}=\sqrt{r/q}$ (\ref{2.8}) holds if and only if (\ref{2.12}) is true. By Corollary \ref{col1} \eqref{2.9} is true. The conclusion that $A_j$ is $T'_{0,p}$ bounded follows from Lemma \ref{lemma4}. \end{proof} \bibliographystyle{amsplain} \begin{thebibliography}{99} \bibitem{AH} T. G. Anderson and D. B. Hinton, \textit{Relative boundedness and compactness for second order differential operators}, J. Ineq. and Appl. \textbf{1} (4) (1997), 375--400. \bibitem{Hg02} R. C. Brown, \textit{Separation and discongugacy}, JPAM \textbf{4} (3), Article 56, 2002 (Electronic). \bibitem{SD} \bysame, \textit{A limit-point criterion for a class of Sturm-Liouville operators defined in $L^p$ spaces}, Proc. Am. Math. Soc \textbf{132} (2004), 2273--2280. \bibitem{BH1} R. C. Brown and D. B. Hinton, \textit{Sufficient conditions for weighted inequalities of sum form}, J. Math. Anal. Appl. \textbf{112} (1985), 563--578. \bibitem{BHP} \bysame, \textit{Sufficient conditions for weighted Gabushin inequalities}, Casopis P\v est. Mat. \textbf{111} (1986), 113--122. \bibitem{BHLONDON} \bysame, \emph{Weighted interpolation inequalities of sum and product form in R$^n$}, J. London Math Soc. (3) \textbf{56} (1988), 261--280. \bibitem{BHCAN} \bysame, \textit{Weighted interpolation inequalities and embeddings in R$^n$}, Canad. J. Math. \textbf{47} (1990), 959--980. \bibitem{BHHardy} \bysame, \textit{A Weighted Hardy's inequality and nonoscillatory differential equations}, Quaes. Mathematicae \textbf{115} (1992), 197--212. \bibitem{M} \bysame, \textit{An interpolation inequality and applications}, Inequalities and Applications (R. P. Agarwal, ed.), World Scientific, Singapore-New Jersey-London-Hong Kong, 1994, 87--101. \bibitem{BHsep} \bysame, \textit{Two separation criteria for second order ordinary or partial differential operators}, Math. Bohem. \textbf{124} (1999), 273--292. \bibitem{GI8} \bysame, \textit{Some One Variable Weighted Norm Inequalities and Their Applications to Sturm-Liouville and other Differential Operators}, to appear in Inequalities and Applications, (C. Bandle, A. Gil\'{a}nyi, L. Losonczi, Z. Pales, M. Plum, eds.), Vol. 157, International Series of Numerical Mathematics, Birkh\"{a}user, Boston, Basel, Stuttgart, 2008. \bibitem{ABH} R. C. Brown, D. B. Hinton, and M. F. Shaw, \textit{Some separation criteria and inequalities associated with linear second order differential operators}, in Function Spaces and Aplications (D. E. Edmunds, et al., eds.), Narosa Publishing House, New Delhi, 2000, 7--35. \bibitem{BC} R. C. Brown and J. Cook, \textit{Continuous invertibility of minimal Sturm-Liouville operators in Lebesgue spaces}, Proc. Roy. Soc. Edinburgh. A \textbf{136} (01) (2006), 53--70. \bibitem{CS} N. Chernyavskaya and L. Schuster, \textit{Weight summability of solutions of the Sturm-Liouville equation}, J. Diff. Eqs. \textbf{151} (1999), 456--473. \bibitem{CS2} \bysame, \textit{A criterion for correct solvability of the Sturm-Liouville equation in the space $L_p(R)$}, Proc. Amer. Math. Soc. \textbf{130}(4) (2001), 1043--1054. \bibitem{EG} W. N. Everitt and M. Giertz, \textit{Some properties of the domains of certain differential operators}, Proc. London Math. Soc.\,(3) \textbf{23} (1971), 301--324. \bibitem{EverGWeid} \bysame, M. Giertz, and J. Weidmann, \textit{Some remarks on a separation and limit-point criterion of second-order ordinary differential expressions}, Math. Ann. \textbf{200} (1973), 335--346. \bibitem{Gold} S. Goldberg, \textit{Unbounded Linear Operators Theory and Applications}, McGraw-Hill Series in Higher Mathematics (E. H. Spanier, ed.), McGraw-Hill Book Company, New York, St. Louis, San Francisco, Toronto, London, Sydney, 1966. \bibitem{Guz} M. De Guzman, ``Differentiation of Integrals in ${\Bbb R}^n$" (Lecture Notes in Mathematics 481), Springer-Verlag, Berlin, 1975. \bibitem{Hart} P. Hartman, \textit{Ordinary Differential Equations}, Second Edition, Birkh\"auser, Boston, Basel, Stuttgart, 1982. \bibitem{HS} E. Hewitt and K. Stromberg, \textit{Real and Abstract Analysis}, Springer-Verlag, New York Heidelberg, Berlin, 1969. \bibitem{KZ3} M. K. Kwong and A. Zettl, \textit{Norm Inequalities for Derivatives and Differences}, Lecture Notes in Mathematics 1536, Springer-Verlag, Berlin, 1992. \bibitem{Nai} M. A. Naimark, \textit{Linear Differential Operators, Part II}, Frederick Ungar, New York, 1968. \bibitem{Read} T. T. Read, \textit{Exponential solutions of $y''+(r-q)y=0$ and the least eigenvalues of Hill's equation} Proc. Amer. Math. Soc. \textbf{50} (1975), 273--280. \bibitem{Rota} G. Rota, \textit{Extension theory of differential operators I}, Comm. in Pure and Applied Math. \textbf{13} (1958), 23--65. \bibitem{Woj} K. Wojteczek-Laszczak, \textit{On quadratic integral inequalities of the second order}, J. Math. Anal. Appl. \textbf{342} (2) (2008), 1356--1352. \end{thebibliography} \end{document} ----------------------- Headers -------------------------- ------ Return-Path: Received: from rly-dd07.mx.aol.com (rly-dd07.mail.aol.com [172.19.141.154]) by air-dd10.mail.aol.com (v121.4) with ESMTP id MAILINDD101-b89480f3d633d4; Wed, 23 Apr 2008 09:45:33 -0400 Received: from ls405.t-com.hr (ls405.t-com.hr [195.29.150.135]) by rly-dd07.mx.aol.com (v121.4) with ESMTP id MAILRELAYINDD073-b89480f3d633d4; Wed, 23 Apr 2008 09:45:08 -0400 Received: from ls242.t-com.hr (ls242.t-com.hr [195.29.150.134]) by ls405.t-com.hr (Postfix) with ESMTP id 798CE6F810E for ; Wed, 23 Apr 2008 13:17:15 +0200 (CEST) Received: from ls242.t-com.hr (localhost.localdomain [127.0.0.1]) by ls242.t-com.hr (Qmlai) with ESMTP id 6B844B08384 for ; Wed, 23 Apr 2008 13:17:15 +0200 (CEST) X-Envelope-Sender: pecaric@element.hr Received: from [192.168.2.101] (89-172-55-198.adsl.net.t-com.hr [89.172.55.198])by ls242.t-com.hr (Qmali) with ESMTP id 9D75D5BC258for ; Wed, 23 Apr 2008 13:17:12 +0200 (CEST) Message-ID: <480F1AB4.5020102@element.hr> Date: Wed, 23 Apr 2008 13:17:08 +0200 From: Pecaric User-Agent: Thunderbird 1.5.0.14 (Windows/20071210) MIME-Version: 1.0 To: RBrown4163@aol.com Subject: [Fwd: Text file of Brown_galley] Content-Type: multipart/mixed; boundary=------------060209010106060905020000 X-imss-version: 2.050 X-imss-result: Passed X-imss-scanInfo: M:P L:N SM:0 X-imss-tmaseResult: TT:0 TS:0.0000 TC:00 TRN:0 TV:5.0.1023(15810.001) X-imss-scores: Clean:62.61307 C:2 M:3 S:5 R:5 X-imss-settings: Baseline:1 C:1 M:1 S:1 R:1 (0.0000 0.0000) X-AOL-IP: 195.29.150.135 X-AOL-SCOLL-SCORE:0:2:486576288:9395240 X-AOL-SCOLL-URL_COUNT: X-AOL-SCOLL-AUTHENTICATION: listenair ; SPF_helo : n X-AOL-SCOLL-AUTHENTICATION: listenair ; SPF_822_from : n .