%------------------------------------------------------------------------------ % Beginning of journal.tex %------------------------------------------------------------------------------ % \documentclass[12pt, reqno]{amsart} \usepackage{amsmath, amsthm, amscd, amsfonts, amssymb, graphicx, color} \usepackage[bookmarksnumbered, plainpages]{hyperref} \textheight 22.5truecm \textwidth 14.5truecm \setlength{\oddsidemargin}{0.35in}\setlength{\evensidemargin}{0.35in} \setlength{\topmargin}{-.5cm} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{xca}[theorem]{Exercise} \newtheorem{problem}[theorem]{Problem} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \numberwithin{equation}{section} \begin{document} \setcounter{page}{31} \noindent\parbox{2.85cm}{\includegraphics*[keepaspectratio=true,scale=1.75]{BJMA.jpg}} \noindent\parbox{4.85in}{\hspace{0.1mm}\\[1.5cm]\noindent Banach J. Math. Anal. 2 (2008), no. 2, 31--41\\ $\frac{\rule{4.55in}{0.05in}}{{}}$\\ {\footnotesize \textcolor[rgb]{0.65,0.00,0.95}{\textsc{\textbf{\large{B}}anach \textbf{\large{J}}ournal of \textbf{\large{M}}athematical \textbf{\large{A}}nalysis}}\\ ISSN: 1735-8787 (electronic)\\ \textcolor[rgb]{0.00,0.00,0.84}{\textbf{http://www.math-analysis.org }}\\ $\frac{{}}{\rule{4.55in}{0.05in}}$}\\[.5in]} \title[Triangle inequality]{Some remarks on the triangle inequality for norms} \author[L. Maligranda]{Lech Maligranda} \address{Department of Mathematics, Lule{\aa} University of Technology, SE--971 87 Lule{\aa}, Sweden.} \email{\textcolor[rgb]{0.00,0.00,0.84}{lech@sm.luth.se}} \dedicatory{Dedicated to Professor Josip Pe\v{c}ari\'{c}\\ \vspace{.5cm}{\rm Submitted by D. E. Alspach}} \subjclass[2000]{Primary 46B20, 46B99; Secondary 51M16.} \keywords{Inequalities, normed space, norm inequality, triangle inequality, reversed triangle inequality, angular distance, Fischer--Musz\'ely equality.} \date{Received: 11 April 2008; Accepted 24 April 2008.} \begin{abstract} Remarks about strengthening of the triangle inequality and its reverse inequality in normed spaces for two and more elements are collected. There is also a discussion on Fischer--Musz\'ely equality for $n$-elements in a normed space. Some other estimates which follow from the triangle inequality are also presented. \end{abstract} \maketitle \section{Introduction and preliminaries} \noindent We present three results on refinements of the triangle inequality and some related estimates of independent interest. \medskip {\bf A)} The following strengthening of the triangle inequality and its reverse inequality in normed spaces were observed already in 2003. The paper \cite{MALI} was sent to AMM in 2003 and published in 2006. \medskip %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{theorem} For any nonzero elements $x$ and $y$ in a normed space $X = (X, \|\cdot\|)$ we have \begin{eqnarray}\label{1} \|x + y \| \leq \|x\| + \|y\| - \left( 2 - \| \frac{x}{\|x\|} + \frac{y}{\|y\|} \| \right) \min \left\{ \|x\|, \|y\| \right\} \end{eqnarray} and \begin{eqnarray}\label{2} \|x + y \| \geq \|x\| + \|y\| - \left( 2 - \| \frac{x}{\|x\|} + \frac{y}{\|y\|} \| \right) \max \left\{ \|x\|, \|y\| \right\}. \end{eqnarray} Moreover, if either $\|x\| = \|y\|$ or $y = c x$ with $c > 0$, then equality holds in both $\eqref{1}$ and \eqref{2}. \end{theorem} \begin{proof}(\cite{MALI}, p. 257) \rm Without loss of generality we may assume that $\|x\| \leq \|y\|$. Then, by the triangle inequality \begin{eqnarray*} \|x + y\| &=& \| \frac{\|x\|}{\|x\|} x + \frac{\|x\|}{\|y\|} y + (1 - \frac{\|x\|}{\|y\|} ) y \| \\ &\leq& \|x\| ~\| \frac{x}{\|x\|} + \frac{y}{\|y\|} \| + \|y\| - \|x\| \\ &=& \|y\| + ( \| \frac{x}{\|x\|} + \frac{y}{\|y\|} \| - 1 ) \|x\| \\ &=& \|x\| + \|y\| + ( \| \frac{x}{\|x\|} + \frac{y}{\|y\|} \| - 2 ) \|x\|, \end{eqnarray*} which establishes the estimate \eqref{1}. Similarly, the computation \begin{eqnarray*} \|x + y\| &=& \| \frac{\|y\|}{\|y\|} y + \frac{\|y\|}{\|x\|} x + (1 - \frac{\|y\|}{\|x\|} ) x \| \\ &\geq & \|y\| \| \frac{y}{\|y\|} + \frac{x}{\|x\|} \| - \left| ~\|x\| - \|y\| ~\right| \\ &=& \|y\| \| \frac{y}{\|y\|} + \frac{x}{\|x\|} \| - \|y\| + \|x\| \\ &=& \|x\| + \|y\| - ( 2 - \| \frac{x}{\|x\|} + \frac{y}{\|y\|} \| ) \|y\| \end{eqnarray*} gives the inequality \eqref{2}. \end{proof} Estimates \eqref{1} and \eqref{2} were explicitly stated and proved in \cite[Theorem 1]{MALI}. Estimate \eqref{1} appeared also in \cite[Lemma 1.1]{HU-L} and implicitly they appeared in \cite[Lemma 2]{K-S-T}. We can put estimates \eqref{1} and \eqref{2} together as $$ \|x + y \| + \left( 2 - \| \frac{x}{\|x\|} + \frac{y}{\|y\|} \| \right) \min \left\{ \|x\|, \|y\| \right\} \leq \|x\| + \|y\| $$ $$\leq \|x + y \| + \left( 2 - \| \frac{x}{\|x\|} + \frac{y}{\|y\|} \| \right) \max \left\{ \|x\|, \|y\| \right\}. $$ Moreover, we can rewrite them as the estimates for the so-called {\it norm-angular distance} (called also the {\it Clarkson distance} since he defined it in \cite{CL}) between nonzero $x$ and $y$ as $d[x, y] = \|\frac{x}{\|x\|} - \frac{y}{\|y\|} \|$ (cf. \cite[Remark 3]{MALI}): \medskip %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{corollary} For any nonzero elements $x$ and $y$ in a normed space $X = (X, \|\cdot\|)$ we have \begin{eqnarray}\label{3} \| \frac{x}{\|x\|} - \frac{y}{\|y\|} \| \leq \frac{ \|x - y \| + \left| ~\|x\| - \|y\| ~\right|}{\max \{ \|x\|, \|y\|\}} \end{eqnarray} and \begin{eqnarray}\label{4} \| \frac{x}{\|x\|} - \frac{y}{\|y\|} \| \geq \frac{ \|x - y \| - \left|~\|x\| - \|y\| ~\right|}{\min \{ \|x\|, \|y\|\}}. \end{eqnarray} \end{corollary} \begin{proof} \rm Estimate \eqref{3} follows directly from \eqref{2} and estimate \eqref{4} directly from \eqref{1}. In fact, inequality \eqref{2} implies that \begin{eqnarray*} \|\frac{x}{\|x\|} - \frac{y}{\|y\|} \| \max \{ \|x\|, \|y\|\} &\leq & \|x - y\| + 2 \max \{ \|x\|, \|y\|\} - \|x\| - \|y\| \\ &=& \|x - y\| + |~\|x - y\|~|, \end{eqnarray*} and inequality \eqref{1} gives that \begin{eqnarray*} \|\frac{x}{\|x\|} - \frac{y}{\|y\|} \| \max \{ \|x\|, \|y\|\} &\geq & \|x - y\| + 2 \min \{ \|x\|, \|y\|\} - \|x\| - \|y\| \\ &=& \|x - y\| - |~\|x - y\|~|. \end{eqnarray*} \end{proof} \medskip Estimates \eqref{1} and \eqref{2} mean for the norm-angular distance that $$ \left( 2 - d[x, -y]\right) \min\{\|x\|, \|y\|\} \leq \|x \| + \|y\| - \| x + y\| $$ $$ \leq \left( 2 - d[x, -y]\right) \max \{\|x\|, \|y\|\} $$ and they were mentioned in the book by E. Deza and M.-M. Deza \cite[p. 52]{DE-D} as a result from \cite{MALI}. Estimates \eqref{3} and \eqref{4} mean that $$ \frac{ \|x - y \| - \left|~\|x\| - \|y\| ~\right|}{\min \{ \|x\|, \|y\|\}} \leq d[x, y] \leq \frac{ \|x - y \| + \left| ~\|x\| - \|y\| ~\right|}{\max \{ \|x\|, \|y\|\}}. $$ Estimate \eqref{3} is a refinement of the Massera--Sch\"affer inequality proved in 1958 (see \cite[Lemma 5.1]{M-S}; see also \cite[Theorem 1]{GUR} and \cite[p. 516]{M-P-F}): for nonzero vectors $x$ and $y$ in $X$ we have that $d[x, y] \leq \frac{2 \|x - y\|}{\max \left( \|x\|, \|y\| \right)}$, which is stronger than the Dunkl--Williams inequality $d[x, y] \leq \frac{4 \|x - y\|}{\|x\| + \|y\|}$ proved in \cite{DU-W}. Estimates \eqref{2} and \eqref{4} can be seen as the reverse inequalities of \eqref{1} and \eqref{3}, respectively. Another proof of estimate \eqref{4} appeared recently in \cite[Theorem 1]{ME}. By the way, Mercer \cite{ME} is using the name {\it Maligranda inequality} for \eqref{3} and {\it reverse Maligranda inequality} for \eqref{4}, but Pe\v{c}ari\'{c}-Raji\'{c} \cite{P-R} called them {\it Maligranda--Mercer inequalities}. \medskip Note that the Dunkl--Williams inequality holds with constant $2$ if and only if $X$ is an inner product space (\cite{KI-S}; cf. also \cite[p. 31]{AM}) but one cannot replace the constant $2$ by $1$ in the Massera--Sch\"affer inequality even for an inner product space. Conditions for equality are proved in \cite{KI-S} and, consequently, we can also ask for the equality conditions in \eqref{3} and \eqref{4}. The Dunkl--Williams estimate was used in the proof of the fact that the Lipschitz norm of the radial projection $k(X)$ is smaller than 2 (see \cite{DF-K}, \cite{SC}, \cite{TH}, \cite[p. 142]{AM}; see also \cite{MA}, where the radial projection was used in the proof of the Dugunji theorem on a failure of the Brouwer fixed point theorem in arbitrary infinite dimensional Banach space, and \cite[Theorem 1]{DE}, where Desbiens showed that the Sch\"affer constant $s(X):= \limsup_{\alpha[x,y] \rightarrow 0^{+}} \frac{\alpha[x,y] \max\{ \|x\|, \|y\| \}}{\|x - y\|}$ is equal to $k(X)$ in every finite-dimensional Banach space $X$). Inequality \eqref{1} was also used in the proof of a certain estimate of the Jordan--von Neumann constant $C_{JN}(X)$ by the James constant $J(X)$ (see \cite[Lemma 1]{MAL} and \cite[Lemma 1]{M-N-P-Z}). Recently, Betiuk--Pilarska and Prus \cite{BP-P} used the inequalities \eqref{1} and \eqref{2} to find estimate of the James constant of a direct sum of the spaces $X_{s}$ by its James constants: $J( (\sum_{s\in S} X_{s})_{Z} ) \leq 2 - \frac{1}{2} [ 2 - \sup_{s \in S} J(X_{s})] [ 2 - J(Z) ]$. Moreover, Jim{\'e}nez--Melado, Llorens--Fuster and Mazu{\~n}{\'a}n--Nararro \cite{J-L-M} introduced the notion of {\it Dunkl--Williams constant} $$DW(X) = \sup \left\{ \frac{\| x\| + \| y\|}{\|x - y \|}: ~x, y \in X, x \neq 0, y \neq 0, x \neq y\right \}$$ and collected its connection with some other constants. \medskip %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{remark} The right-hand sides of \eqref{1} and \eqref{2} can be written also in another way since \vspace{-5mm} \begin{eqnarray*} \|x\| + \|y\| &-& \left( 2 - \|\frac{x}{\|x\|} + \frac{y}{\|y\|} \| \right) \min \left\{ \|x\|, \|y\| \right\} \\ &=& \min \left\{ \|x\|, \|y\| \right\} \| \frac{x}{\|x\|} + \frac{y}{\|y\|} \| + \left|~\|x\| - \|y\|~\right| \end{eqnarray*} \vspace{-5mm} and \begin{eqnarray*} \|x\| + \|y\| &-& \left( 2 - \| \frac{x}{\|x\|} + \frac{y}{\|y\|} \| \right) \max \left\{ \|x\|, \|y\| \right\} \\ &=& \max \left\{ \|x\|, \|y\| \right\} \| \frac{x}{\|x\|} + \frac{y}{\|y\|} \| - \left|~\|x\| - \|y\|~\right|. \end{eqnarray*} \end{remark} Kato, Saito and Tamura (\cite{KA-S-T}, Theorem 1) generalized inequalities \eqref{1} and \eqref{2} to $n$-elements with $n \geq 2$: {\it For any nonzero elements $x_{1}, x_{2}, \ldots, x_{n}$ in a normed space $X = (X, \|\cdot\|)$ we have \begin{eqnarray}\label{5} \| \sum_{k=1}^{n} x_{k} \| \leq \sum_{k=1}^{n} \|x_{k}\| - \left( n - \| \sum_{k=1}^{n}\frac{x_{k}}{\|x_{k}\|} \| \right) ~\min_{k=1, 2,\ldots,n} ~\|x_{k}\| \end{eqnarray} and \begin{eqnarray}\label{6} \| \sum_{k=1}^{n} x_{k} \| \geq \sum_{k=1}^{n} \|x_{k}\| - \left( n - \| \sum_{k=1}^{n}\frac{x_{k}}{\|x_{k}\|} \| \right) ~\max_{k=1, 2,\ldots,n} ~\|x_{k}\|. \end{eqnarray} } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{remark} If either $\|x_{1}\| = \|x_{2}\| = \ldots = \|x_{n} \|$ or for a fixed $i \in I = \{1, 2, \ldots, n\}$ we have that $0 \neq x_{i} \in X$ and $x_{k} = c_{k} x_{i}$ with $c_{k} > 0$ for $k \in I \setminus \{i\}$, then equality holds in both \eqref{5} and \eqref{6}. \end{remark} \medskip \noindent Immediately from inequalities \eqref{5} and \eqref{6} we have the following equivalence. \medskip %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{corollary}\label{c2} For nonzero vectors $x_{1}, x_{2}, \ldots, x_{n}$ in a normed space $X = (X, \|\cdot\|)$ we have equality $\|\sum_{k=1}^{n} x_{k}\| = \sum_{k=1}^{n} \| x_{k}\|$ if and only if $\|\sum_{k=1}^{n} \frac{x_{k}}{\|x_{k}\|} \| = n$. \end{corollary} \medskip Let us compare the above considerations with the Fischer--Musz\'ely equality for $n$-elements in a normed space. The statement was proved for two-elements ($n = 2$) by Fischer--Musz\'ely \cite{FI-M} (see also \cite[Lemma 1]{BA}, \cite[Lemma 2.1]{AB-A-B} and \cite[Lemma 11.4]{AB-A}) and for three-elements ($n = 3$) by Lin \cite[Lemma 1]{LIN}. An induction proof for all $n \geq 2$ can be found in \cite[pp. 335-336]{A-AL} and \cite[p. 463]{AB-A}. We present a direct proof following the ideas of Baker \cite{BA} and Lin \cite {LIN}. Some results, without knowledge of the Fisher--Musz{\'e}ly theorem, were presented also by Kato, Saito and Tamura (cf. \cite{KA-S-T}, Lemma 1 and Theorems 3, 4). \bigskip %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{theorem}\label{t2} {\bf (a)}. If $x_{1}, x_{2}, \ldots, x_{n}$ are elements in a normed space $X = (X, \|\cdot\|)$, then the equality \begin{eqnarray}\label{7} \| \sum_{k=1}^{n} x_{k} \| = \sum_{k=1}^{n} \|x_{k}\| \end{eqnarray} holds if and only we have equality \begin{eqnarray}\label{8} \| \sum_{k=1}^{n} a_{k} x_{k} \| = \sum_{k=1}^{n} a_{k} \|x_{k}\| \end{eqnarray} for any positive numbers $a_{1}, a_{2}, \ldots, a_{n}$. {\bf (b).} If, in addition, $X$ is a strictly convex normed space, that is, its sphere does not contain any segment, then the equalities \eqref{7} and \eqref{8} for nonzero $x_{1}, x_{2}, \ldots, x_{n} \in X$ are equivalent to the equalities \begin{eqnarray}\label{9} \frac{x_{1}}{\|x_{1}\|} = \frac{x_{2}}{\|x_{2}\|} = \ldots = \frac{x_{n}}{\|x_{n}\|}. \end{eqnarray} \end{theorem} \begin{proof} (a) Of course, it is sufficient to prove the implication \eqref{7}$\Longrightarrow$ \eqref{8}. Without loss of generality we can assume that $a_{1} = \max_{k = 1, 2, \ldots, n} a_{k}$. Then, by \eqref{7}, we obtain \begin{eqnarray*} \| \sum_{k=1}^{n} a_{k} x_{k} \| &=& \| a_{1} \sum_{k=1}^{n} x_{k} - \sum_{k=1}^{n} (a_{1} - a_{k}) x_{k} \| \\ &\geq& a_{1} \| \sum_{k=1}^{n} x_{k}\| - \|\sum_{k=1}^{n} (a_{1} - a_{k}) x_{k} \| \\ &\geq& a_{1} \| \sum_{k=1}^{n} x_{k}\| - \sum_{k=1}^{n} (a_{1} - a_{k}) \|x_{k} \| \\ &=& \sum_{k=1}^{n} a_{k} \|x_{k}\|. \end{eqnarray*} The reverse inequality follows from the triangle inequality and thus we obtain the equality \eqref{8}. (b) It is well-known that a normed space $X$ is strictly convex if and only if the equality $\|x + y \| = \|x\| + \|y\|$ for nonzero $x, y$ implies that $x = c y$ for some $c > 0$. If we assume that \eqref{7} holds, then for any $1 < j \leq n$ \begin{eqnarray*} \| x_{1} + x_{j} \| &\geq& \| \sum_{k=1}^{n} x_{k} \| - \| \sum_{k\neq 1, j} x_{k} \| \geq \| \sum_{k=1}^{n} x_{k} \| - \sum_{k\neq 1, j} \|x_{k} \| \\ &=& \sum_{k=1}^{n} \| x_{k} \| - \sum_{k\neq 1, j} \|x_{k} \| = \|x_{1}\| + \|x_{j}\|, \end{eqnarray*} and whence $\| x_{1} + x_{j} \| = \|x_{1}\| + \|x_{j}\|$, which by the strict convexity of $X$ gives that $x_{1} = c_{j} x_{j}$ with $c_{j} > 0, 1 < j \leq n$. Consequently, $c_{j} = \frac{\|x_{1}\|}{\|x_{j}\|}$ or $\frac{x_{1}}{\|x_{1}\|} = \frac{x_{j}}{\|x_{j}\|}$ for any $1 < j \leq n$, and \eqref{9} is proved. If \eqref{9} holds, then for any positive numbers $a_{1}, a_{2}, \ldots, a_{n}$ \begin{eqnarray*} \| \sum_{k=1}^{n} a_{k} x_{k} \| &=& \| \sum_{k=1}^{n} a_{k} \|x_{k}\| \frac{x_{k}}{\|x_{k}\|} \| = \| \sum_{k=1}^{n} a_{k} \|x_{k}\| \frac{x_{i}}{\|x_{i}\|} \| \\ &=& \sum_{k=1}^{n} a_{k} \|x_{k}\| ~\| \frac{x_{i}}{\|x_{i}\|} \| = \sum_{k=1}^{n} a_{k} \|x_{k}\|, \end{eqnarray*} and the theorem is proved. \end{proof} %%%%%%%%%%%%%%%%% \begin{remark} If \eqref{9} holds, then we have equalities \eqref{7} and \eqref{8} without any restriction on a normed space $X$. It will be interesting to characterize equalities in \eqref{5} and \eqref{6}. \end{remark} \medskip Some other sharpenings of \eqref{3} and \eqref{4} in the case $n \geq 3$ (for $n = 2$ they are just estimates \eqref{1} and \eqref{2} was proved by Mitani, Saito, Kato and Tamura \cite[Theorem 1]{M-S-K-T}: {\it For any nonzero elements $x_{1}, x_{2}, \ldots, x_{n}$ in a normed space $X = (X, \|\cdot\|)$ we have $$ \| \sum_{k=1}^{n} x_{k} \| + \sum_{k=2}^{n} \left( k - \| \sum_{i=1}^{k} \frac{x_{i}^{*}} {\|x_{i}^{*}\| } \| \right) \left(\|x_{k}^{*}\| - \|x_{k+1}^{*}\| \right) \leq \sum_{k=1}^{n} \| x_{k} \| $$ $$ \leq \| \sum_{k=1}^{n} x_{k} \| - \sum_{k=2}^{n} \left( k - \| \sum_{i=n-(k-1)}^{n} \frac{x_{i}^{*}} {\|x_{i}\|} \right) \left(\|x_{n-k}^{*}\| - \|x_{n-(k-1)}^{*}\| \right), $$ where $x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}$ are the rearrangements\,~~ of\,~~ $\|x_{1}\|, \|x_{2}\|, \ldots, \|x_{n}\|$\,\, satisfying~~~ \, $\|x_{1}^{*} \| \geq \|x_{2}^{*}\| \geq \ldots \geq \|x_{n}^{*}\|$ and $x_{0}^{*} = x_{n+1}^{*}= 0.$ } \medskip Pe\v{c}ari\'{c} and Raji\'{c} \cite{P-R} generalized inequalities \eqref{3} and \eqref{4} to $n$-elements with $n \geq 2$: {\it if nonzero $x_{1}, x_{2}, \ldots, x_{n} \in X$, then $$ \max_{1 \leq i \leq n} \{ \frac{S - D_{i}}{\|x_{i}\|} \} \leq \| \sum_{k=1}^{n}\frac{x_{k}}{\|x_{k}\|}\| \leq \min_{1 \leq i \leq n} \{ \frac{S + D_{i}}{\|x_{i}\|} \}, $$ where $S = \| \sum_{k=1}^{n} x_{k} \|$ and $D_{i} = \sum_{k=1}^{n} \left| \| x_{k} \| - \|x_{i}\| \right|, i = 1, 2, \ldots, n.$} They also observed (cf. \cite{P-R}, Corollary 2.3) that from these estimates we can obtain the estimates \eqref{5} and \eqref{6} in the form $$ \sum_{k=1}^{n} \|x_{k}\| \leq \| \sum_{k=1}^{n} x_{k} \| + \left( n - \| \sum_{k=1}^{n}\frac{x_{k}}{\|x_{k}\|} \| \right) ~\max_{k=1, 2,\ldots,n} ~\|x_{k}\| $$ and $$ \sum_{k=1}^{n} \|x_{k}\| \geq\| \sum_{k=1}^{n} x_{k} \| + \left( n - \| \sum_{k=1}^{n}\frac{x_{k}}{\|x_{k}\|} \| \right) ~\min_{k=1, 2,\ldots,n} ~\|x_{k}\|. $$ These last inequalities were also obtained, in a more general form and even for convex functions, by Dragomir \cite{DR}: $$ \sum_{k=1}^{n} \|x_{k}\|^{p} - n^{1-p} \|\sum_{k=1}^{n} x_{k}\|^{p} \leq \left( \sum_{k=1}^{n} \|x_{k}\|^{p-1} - \| \sum_{k=1}^{n}\frac{x_{k}}{\|x_{k}\|} \|^{p}\right) ~\max_{k=1, 2,\ldots,n} ~\|x_{k}\| $$ and $$ \sum_{k=1}^{n} \|x_{k}\|^{p} - n^{1-p} \|\sum_{k=1}^{n} x_{k}\|^{p} \geq \left( \sum_{k=1}^{n} \|x_{k}\|^{p-1} - \| \sum_{k=1}^{n}\frac{x_{k}}{\|x_{k}\|} \|^{p}\right) ~\min_{k=1, 2,\ldots,n} ~\|x_{k}\|, $$ where $p \geq 1$ and $n \geq 2$. \bigskip {\bf B)} In 1930 Alfred Tarski posed in \cite{TA} the question to prove that $$ \left |~ | x| - | y| ~\right | = | x + y| + | x - y| - | x| - |y| $$ holds for all real numbers $x, y$, and in 1931 appeared his nice solution \cite{TA}. Of course, this equality is not true for complex numbers (as a counterexample it is enough to take $x = 1$ and $y = i$). \noindent Note also that since for all $x, y \in {\Bbb R}$ we have the equality $\max\{|x + y|, |x - y|\} = |x| + |y|$ and also \begin{eqnarray*} |x + y| + |x - y| - |x| - |y| &=& |x + y| + |x - y| - \max\{|x + y|, |x - y|\}\\ &=& \min\{|x + y|, |x - y|\}, \end{eqnarray*} it yields that for all real $x, y$: \begin{eqnarray*} \left |~ | x| - | y| ~\right | = | x + y| + | x - y| - | x| - |y| = \min\{|x + y|, |x - y|\}. \end{eqnarray*} Next we state a corresponding result in normed spaces. \bigskip %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{theorem} \label{t3} For any elements $x, y$ in a normed space $X = (X, \|\cdot\|)$ we have that \begin{eqnarray}\label{11} \left |~\| x\| - \| y\| ~\right | \leq \| x + y\| + \| x - y\| - \| x\| - \|y\| \leq \min \{ \|x + y\|, \| x - y\|\} \end{eqnarray} and \begin{eqnarray}\label{12} \left |~\| x\| - \| y\| ~\right | \leq \|x\| + \|y\| - \left |~\| x + y\| - \| x - y\| ~\right |. \end{eqnarray} \end{theorem} \begin{proof} It is clear that for every $x, y \in X$ $$ \| x\| + \|y\| + \left |~\| x\| - \| y\| ~\right | = 2 \max \{ \|x\|, \|y\|\} $$ and $$ \| x\| + \|y\| - \left |~\| x\| - \| y\| ~\right | = 2 \min \{ \|x\|, \|y\|\}. $$ By the triangle inequality $$ \| x + y\| + \| x - y\| \geq \| x + y \pm (x - y)\| = 2 \|x\| ~~{\rm or} ~= 2 \|y\|. $$ Thus, $$ \| x + y\| + \| x - y\| \geq 2 \max \{ \|x\|, \|y\|\}, $$ and by combining these facts we obtain the first estimate in \eqref{11}. The second estimate in \eqref{11} follows directly from the triangle inequality. \\ By the triangle inequality $$ \left |~\| x + y\| - \| x - y\| ~\right | \leq \|x + y \pm(x - y)\| = 2 \|x\| ~~{\rm or} ~= 2 \|y\|, $$ so that $$ \left |~\| x + y\| - \| x - y\| ~\right | \leq 2 \min \{ \|x\|, \|y\|\} $$ and also the estimates in \eqref{12} are proved. \end{proof} \bigskip {\bf C)} In a normed space $X = (X, \|\cdot\|)$ for a fixed $u \in X$ and $p \geq 1$ we consider new norms $\|\cdot\|_{u, p}$ defined by \begin{eqnarray}\label{13} \|x\|_{u, p} = \left( \| x + \|x\| u \|^{p} + \| x - \|x\| u \|^{p} \right)^{1/p}. \end{eqnarray} The norm $\|\cdot\|_{u, 1}$ was considered by Odell and Schlumprecht \cite[p. 178]{O-S} to produce a strictly convex norm in every separable Banach space (cf. also \cite[p. 118]{PK}). \bigskip %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{theorem} \label{t4} The functionals $\|\cdot\|_{u, p}$ defined by \eqref{13} are norms in $X$ which are equivalent to the norm $\|\cdot\|$. \end{theorem} \bigskip \noindent To prove this theorem we will need the following lemma of independent interest. \medskip %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{lemma} \label{l1} For fixed $x, y$ in a normed space $X$ and $p \geq 1$ consider the function $f_{p}: {\Bbb R} \rightarrow [0, \infty)$ defined by $$ f_{p}(t) = \left( \| x + t y \|^{p} + \| x - t y \|^{p} \right)^{1/p}, ~~t \in {\Bbb R}. $$ Then $f_{p}$ is an even convex function and so is increasing on $[0, \infty)$. \end{lemma} \begin{proof} Let $0 \leq \alpha, \beta \leq 1$ be such that $\alpha + \beta = 1$ and $s, t \in {\Bbb R}$. Then, by the triangle inequality, homogeneouity of the norm $\|\cdot\|$ and the Minkowski inequality for two-dimensional $l^{p}_{2}$-norm, that is, for $a, b, c, d \geq 0$ it yields that $$ \|(a+c, b + d)\|_{p} \leq \|(a, b)\|_{p} +,\|(c, d)\|_{p} $$ or, equivalently, $$ [(a+c)^{p} + (b + d)^{p}]^{1/p} \leq (a^{p} + b^{p})^{1/p} + (c^{p} + d^{p})^{1/p}, $$ we obtain the convexity of $f_{p}$: \begin{eqnarray*} f_{p}( \alpha s + \beta t) &=& \left( \| x + (\alpha s + \beta t) y) \|^{p} + \| x - (\alpha s + \beta t) y) \|^{p} \right)^{1/p}\\ &=& \left( \| \alpha (x + s y) + \beta (x + t y) \|^{p} + \| \alpha (x - s y) + \beta (x - t y) \|^{p} \right)^{1/p}\\ &\leq& \left( [ \alpha \| x + s y\| + \beta \|x + t y \|]^{p} + [ \alpha \|x - s y\| + \beta \|x - t y \|]^{p} \right)^{1/p}\\ &\leq& \left( [\alpha \| x + s y\|]^{p} + [\alpha \|x - s y\|]^{p} \right)^{1/p} \\ &+& \left( [\alpha \| x + t y\|]^{p} + [\alpha \|x - t y\|]^{p} \right)^{1/p} = \alpha f_{p}(s) + \beta f_{p}(t). \end{eqnarray*} Moreover, by the triangle inequality and the concavity of $u^{1/p}$, we get, for $t \in {\Bbb R}$, that \begin{eqnarray*} f_{p}(0) &=& 2^{1/p} \|x\| \leq 2^{1/p} \frac{ \| x + t y \| + \| x - t y \|}{2}\\ &\leq& 2^{1/p} ( \frac{\| x + t y \|^{p} + \| x - t y \|^{p}}{2} )^{1/p} = f_{p}(t). \end{eqnarray*} In particular, if $0 \leq s < t$, then \begin{eqnarray*} f_{p}(s) &=& f_{p} \left (\frac{s}{t} t + (1-\frac{s}{t}) 0 \right ) \leq \frac{s}{t} f_{p}(t) + (1-\frac{s}{t}) f_{p}(0) \\ &\leq & \frac{s}{t} f_{p}(t) + (1-\frac{s}{t}) f_{p}(t) = f_{p}(t). \end{eqnarray*} Note also that $|f_{p}(s) - f_{p}(t)| \leq 2^{1/p} |s - t| \|y\|$ for all $s, t \in {\Bbb R}$. \end{proof} \medskip We are now ready to prove Theorem \ref{t4}. \begin{proof} We need to show the triangle inequality for $\|\cdot\|_{u, p}$. For any $x, y \in X$, by using the monotonicity from Lemma \ref{l1}, twice the triangle inequality of the norm $\|\cdot\|$ and the Minkowski inequality for the two-dimensional $l^{p}_{2}$-norm, we obtain that \begin{eqnarray*} \| x + y \|_{u, p} &=& \left( \| x + y + \|x + y\| u \|^{p} + \| x + y - \|x + y \| u \|^{p} \right)^{1/p}\\ &\leq& \left( \| x + y + (\|x\| + \|y\|) u \|^{p} + \| x + y - (\|x\| + \|y\| ) u \|^{p} \right)^{1/p}\\ &=& \left( \| (x + \|x\| u) + (y + \|y\| u) \|^{p} + \| (x - \|x\| u) + (y - \|y\| u) \|^{p} \right)^{1/p}\\ &\leq& \left( [\| x + \|x\| u\| + \| y + \|y\| u\|]^{p} + [\| x - \|x\| u\| + \|y - \|y\| u \|]^{p} \right)^{1/p}\\ &\leq& \left( \| x + \|x\| u \|^{p} + \| x - \|x\| u \|^{p} \right)^{1/p}\\ &+& \left( \| y + \|y\| u \|^{p} + \|y - \|y\| u \|^{p} \right)^{1/p} = \| x \|_{u, p} + \| y \|_{u, p}. \end{eqnarray*} Moreover, by the convexity of $u^{p}$ and the triangle inequality, $$ \| x \|_{u, p} \geq 2^{1/p-1} (\| x + \|x\| u \| + \| x - \|x\| u \|) \geq 2^{1/p} \| x\|, $$ and also, by the triangle inequality, $$ \| x \|_{u, p} \leq 2^{1/p} (\|x\| + \|x\| \|u\|). $$ Thus $$ 2^{1/p} \| x\| \leq \| x \|_{u, p} \leq 2^{1/p} (1 + \|u\|) \|x\|. $$ \end{proof} \bibliographystyle{amsplain} \begin{thebibliography}{10} \bibitem{A-AL} Y. A. Abramovich and C. D. Aliprantis, \textit{Problems in Operator Theory}, AMS, Providence, RI 2002. \bibitem{AB-A} Y.A. Abramovich and C.D. Aliprantis, \textit{An Invitation to Operator Theory}, AMS, Providence, RI 2002. \bibitem{AB-A-B} Y.A. Abramovich, C.D. Aliprantis and O. Burkinshaw, \textit{The Daugavet equation in uniformly convex Banach spaces}, J. Funct. Anal. \textbf{97} (1991), 215--230. \bibitem{AM} D. Amir, \textit{Characterizations of Inner Product Spaces}, Birkh\"auser Verlag, Basel 1986. \bibitem{BA} J.A. Baker, \textit{Isometries in normed spaces}, Amer. Math. Monthly \textbf{78} (1971), 655--658. \bibitem{BP-P} A. Betiuk--Pilarska and S. Prus, \textit{Uniform nonsquareness of direct sums of Banach spaces}, Oct. 2007, manuscript, 5 pages. \bibitem{CL} J.A. Clarkson, \textit{Uniformly convex spaces}, Trans. Amer. Math. Soc. \textbf{40} (1936), 396--414. \bibitem{DF-K} D.G. DeFigueiredo and L.A. Karlovitz, \textit{On the radial projection in normed spaces}, Bull. Amer. Math. Monthly \textbf{73} (1967), 364--368. \bibitem{DE} J. Desbiens, \textit{On the Thele and Sch\"affer constants}, Ann. Sci. Math. Qu\'ebec \textbf{16} (1992), 125--141 (in French). \bibitem{DE-D} E. Deza and M.-M. Deza, \textit{Dictionary of Distances}, Elsevier 2006. \bibitem{DR} S.S. Dragomir, \textit{Bounds for the normalised Jensen functional}, Bull. Austral. Math. Soc. \textbf{74} (2006), No. 3, 471--478. \bibitem{DU-W} C.F. Dunkl and K.S. Williams, \textit{A simple norm inequality}, Amer. Math. Monthly \textbf{71} (1964), 53--54. \bibitem{FI-M} P. Fischer and Gy. Musz\'ely, \textit{On some new generalizations of the functional equation of Cauchy}, Canad. Math. Bull. \textbf{10} (1967), 197--205. \bibitem{GUR} V. I. Gurari\u\i, \textit{Strengthening the Dunkl--Williams inequality on the norms of elements of Banach space}, Dopovidi Akad. Nauk Ukrain. RSR, 1966, 35--38 (in Ukrainian). \bibitem{HU-L} H. Hudzik and T.R. Landes, \textit{ Characteristic of convexity of K{\"o}the function spaces}, Math. Ann. \textbf{294} (1992), 117--124. \bibitem{J-L-M} A. Jim{\'e}nez-Melado, E. Llorens-Fuster and E.M. Mazu{\~n}{\'a}n-Nararro, \textit{The Dunkl--Williams constant, convexity, smoothness and normal structure}, J. Math. Anal. Appl., to appear. \bibitem{K-S-T} M. Kato, K.-S. Saito and T. Tamura, \textit{Uniform non-squareness of $\psi$-direct sums of Banach spaces $X\oplus_{\psi} Y$}, Math. Inequal. Appl. \textbf{7} (2004), No. 3, 429--437. \bibitem{KA-S-T} M. Kato, K.-S. Saito and T. Tamura, \textit{Sharp triangle inequality and its reverse in Banach spaces}, Math. Inequal. Appl. \textbf{10} (2007), No. 2, 451--460. \bibitem{KE} L.M. Kelly, \textit{The Massera--Sch\"affer equality}, Amer. Math. Monthly \textbf{73} (1966), 1102--1103. \bibitem{KI-S} W.A. Kirk and M.F. Smiley, \textit{Another characterization of inner product spaces}, Amer. Math. Monthly \textbf{71} (1964), 890--891. \bibitem{LIN} C.-S. Lin, \textit{Generalized Daugavet equations and invertible operators on uniformly convex Banach spaces}, J. Math. Anal. Appl. \textbf{197} (1996), no. 2, 518--528. \bibitem{MA} L. Maligranda, \textit{A remark on Dugundji theorem}, Acta Cient. Venezolana \textbf{38} (1987), 642--643. \bibitem{MAL} L. Maligranda, \textit{On an estimate of the Jordan-von Neumann constant by the James constant}, Aug. 2003, 5 pages manuscript. \bibitem{MALI} L. Maligranda, \textit{Simple norm inequalities}, Amer. Math. Monthly \textbf{113} (2006), 256--260. \bibitem{M-N-P-Z} L. Maligranda, L. I. Nikolova, L. E. Persson and T. Zachariades, \textit{On $n$-th James and Khintchine constants of Banach spaces}, Math. Inequal. Appl. \textbf{11} (2008), 1--22. \bibitem{M-S} J.L. Massera and J.J. Sch\"affer, \textit{ Linear differential equations and functional analysis. I}, Ann. of Math. \textbf{67} (1958), 517--573. \bibitem{ME} P.R. Mercer, \textit{The Dunkl--Williams inequality in an inner product spaces}, Math. Inequal. Appl. \textbf{10} (2007), No. 2, 447--450. \bibitem{M-S-K-T} K.-I. Mitani, K.-S. Saito M. Kato and T. Tamura,\textit{On sharp triangle inequalities in Banach spaces}, J. Math. Anal. Appl. \textbf{336} (2007), No. 2, 1178--1186. \bibitem{M-P-F} D.S. Mitrinovi\'{c}, J.E. Pe\v{c}ari\'{c} and A.M. Fink, \textit{Classical and New Inequalities in Analysis}, Kluwer Academic Publ., Dordrecht 1993. \bibitem{O-S} E. Odell and Th. Schlumprecht, \textit{Asymptotic properties of Banach spaces under renormings}, J. Amer. Math. Soc. \textbf{11} (1998), No. 11, 175--188. \bibitem{P-R} J.E. Pe\v{c}ari\'{c} and R. Raji\'{c}, \textit{The Dunkl--Williams inequality with $n$ elements in normed linear spaces}, Math. Inequal. Appl. \textbf{10} (2007), No. 2, 461--470. \bibitem{PK} P.-K. Lin, \textit{K{\"o}the-Bochner Function Spaces}, Birkh{\"a}user, Boston 2004. \bibitem{SC} J.J. Sch\"affer, \textit{Another characterization of Hilbert product spaces}, Studia Math. \textbf{25} (1965), 271--276. \bibitem{TA} A. Tarski, \textit{ Problem no. 83}, Parametr \textbf{1} (1930), No. 6, 231; Solution: M{\l}ody Matematyk \textbf{1} (1931), No. 1, 90 (in Polish). \bibitem{TH} R.L. Thele, \textit{Some results on the radial projection in Banach spaces}, Proc. Amer. Math. Soc. \textbf{42} (1974), 483--486. \end{thebibliography} \end{document} %------------------------------------------------------------------------------ % End of journal.tex %------------------------------------------------------------------------------ .