\documentclass[12pt, reqno]{amsart} \usepackage{amsmath, amsthm, amscd, amsfonts, amssymb, graphicx, color} \usepackage[bookmarksnumbered, plainpages]{hyperref} \textheight 22.5truecm \textwidth 14.5truecm \setlength{\oddsidemargin}{0.35in}\setlength{\evensidemargin}{0.35in} \setlength{\topmargin}{-.5cm} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{xca}[theorem]{Exercise} \newtheorem{problem}[theorem]{Problem} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} %\usepackage{showkeys} \newcommand{\tx}[1]{\mbox{\quad{#1}\quad}} \numberwithin{equation}{section} \begin{document} \setcounter{page}{68} \noindent\parbox{2.85cm}{\includegraphics*[keepaspectratio=true,scale=1.75]{BJMA.jpg}} \noindent\parbox{4.85in}{\hspace{0.1mm}\\[1.5cm]\noindent Banach J. Math. Anal. 2 (2008), no. 2, 68--75\\ $\frac{\rule{4.55in}{0.05in}}{{}}$\\ {\footnotesize \textcolor[rgb]{0.65,0.00,0.95}{\textsc{\textbf{\large{B}}anach \textbf{\large{J}}ournal of \textbf{\large{M}}athematical \textbf{\large{A}}nalysis}}\\ ISSN: 1735-8787 (electronic)\\ \textcolor[rgb]{0.00,0.00,0.84}{\textbf{http://www.math-analysis.org }}\\ $\frac{{}}{\rule{4.55in}{0.05in}}$}\\[.5in]} \title[Eigenvalue estimates]{An eigenvalue problem with mixed boundary conditions and trace theorems} \author[C.Bandle]{Catherine Bandle$^1$} \address{$^{1}$ Department of Mathematics, University of Basel, Rheinsprung 21, CH-4051 Basel, Switzerland.} \email{\textcolor[rgb]{0.00,0.00,0.84}{catherine.bandle@unibas.ch}} \dedicatory{This paper is dedicated to Professor J. E. Pecaric\\ \vspace{.5cm} {\rm Submitted by P. K. Sahoo}} \subjclass[2000]{Primary 35P15, 47A75 ; Secondary 49R50, 51M16.} \keywords{Estimates of eigenvalues, trace inequality, comparison theorems for eigenvalues.} \date{Received: 21 April 2008; Accepted 20 May 2008.} \begin{abstract} An eigenvalue problem is considered where the eigenvalue appears in the domain and on the boundary. This eigenvalue problem has a spectrum of discrete positive and negative eigenvalues. The smallest positive and the largest negative eigenvalue $\lambda_{\pm 1}$ can be characterized by a variational principle. We are mainly interested in obtaining non trivial upper bounds for $\lambda_{-1}$. We prove some domain monotonicity for certain special shapes using a kind of maximum principle derived by Bandle, v. Bellow and Reichel in [J. Eur. Math. Soc., 10 (2007), 73--104]. We then apply these bounds to the trace inequality. \end{abstract} \maketitle \vspace{1in} \end{document} .