\documentclass[12pt, reqno]{amsart} \usepackage{amsmath, amsthm, amscd, amsfonts, amssymb, graphicx, color} \usepackage[bookmarksnumbered, plainpages]{hyperref} \textheight 22.5truecm \textwidth 14.5truecm \setlength{\oddsidemargin}{0.35in}\setlength{\evensidemargin}{0.35in} \setlength{\topmargin}{-.5cm} \newtheorem{theorem}{Theorem}[section] \newtheorem*{theorema}{Theorem A} \newtheorem*{theoremb}{Theorem B} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{xca}[theorem]{Exercise} \newtheorem{problem}[theorem]{Problem} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \newtheorem{remarks}[theorem]{Remarks} \numberwithin{equation}{section} \newcommand{\D}{\mathcal{D}} \newcommand{\R}{\mathcal{R}} \newcommand{\N}{\mathcal{N}} \newcommand{\Hi}{\mathcal{H}} \newcommand{\G}{\mathcal{G}} \newcommand{\beq}{\begin{equation}} \newcommand{\eeq}{\end{equation}} \newcommand{\I}{\mathcal{I}} \newcommand{\T}{\mathcal{T}} \newcommand{\eps}{\epsilon} \newcommand{\bal}{\begin{align}} \newcommand{\eal}{\end{align}} \newcommand{\benu}{\begin{enumerate}} \newcommand{\eenu}{\end{enumerate}} \begin{document} \setcounter{page}{42} \noindent\parbox{2.85cm}{\includegraphics*[keepaspectratio=true,scale=1.75]{BJMA.jpg}} \noindent\parbox{4.85in}{\hspace{0.1mm}\\[1.5cm]\noindent Banach J. Math. Anal. 2 (2008), no. 2, 42--58\\ $\frac{\rule{4.55in}{0.05in}}{{}}$\\ {\footnotesize \textcolor[rgb]{0.65,0.00,0.95}{\textsc{\textbf{\large{B}}anach \textbf{\large{J}}ournal of \textbf{\large{M}}athematical \textbf{\large{A}}nalysis}}\\ ISSN: 1735-8787 (electronic)\\ \textcolor[rgb]{0.00,0.00,0.84}{\textbf{http://www.math-analysis.org }}\\ $\frac{{}}{\rule{4.55in}{0.05in}}$}\\[.5in]} \title [Sum Inequalities in $\mathbf{L}^{\mathbf{p}}$ spaces]{Some weighted sum and product inequalities in $\mathbf{L}^{\mathbf{p}}$ spaces and their applications} \author[R.C. Brown ]{R. C. Brown} \address{Department of Mathematics, University of Alabama-Tuscaloosa, AL 35487-0350, USA} \email{\textcolor[rgb]{0.00,0.00,0.84}{dicbrown@bama.ua.edu}} \dedicatory{This paper is dedicated to Professor Joseph E. Pe\v{c}ari\'{c}\\ \vspace{.5cm} {\rm Submitted by Th. M. Rassias}} \subjclass[2000]{Primary: 26D10, 47A30, 34B24; Secondary 47E05} \keywords{Weighted sum inequalities, weighted product inequalities, Sturm Liouville operators, limit-point conditions, relatively bounded perturbations} \date{Received: 12 April 2008; Accepted 21 April 2008.} \begin{abstract} We survey some old and new results concerning weighted norm inequalities of sum and product form and apply the theory to obtain limit-point conditions for second order differential operators of Sturm-Liouville form defined in $L^p$ spaces. We also extend results of Anderson and Hinton by giving necessary and sufficient criteria that perturbations of such operators be relatively bounded. Our work is in part a generalization of the classical Hilbert space theory of Sturm-Liouville operators to a Banach space setting. \end{abstract} \maketitle \vspace{1in} \end{document} .