%------------------------------------------------------------------------------ % Beginning of journal.tex %------------------------------------------------------------------------------ % \documentclass[12pt, reqno]{amsart} \usepackage{amsmath, amsthm, amscd, amsfonts, amssymb, graphicx, color} \usepackage[bookmarksnumbered, plainpages]{hyperref} \textheight 22.5truecm \textwidth 14.5truecm \setlength{\oddsidemargin}{0.35in}\setlength{\evensidemargin}{0.35in} \setlength{\topmargin}{-.5cm} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{xca}[theorem]{Exercise} \newtheorem{problem}[theorem]{Problem} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \numberwithin{equation}{section} \begin{document} \setcounter{page}{31} \noindent\parbox{2.85cm}{\includegraphics*[keepaspectratio=true,scale=1.75]{BJMA.jpg}} \noindent\parbox{4.85in}{\hspace{0.1mm}\\[1.5cm]\noindent Banach J. Math. Anal. 2 (2008), no. 2, 31--41 \\ $\frac{\rule{4.55in}{0.05in}}{{}}$\\ {\footnotesize \textcolor[rgb]{0.65,0.00,0.95}{\textsc{\textbf{\large{B}}anach \textbf{\large{J}}ournal of \textbf{\large{M}}athematical \textbf{\large{A}}nalysis}}\\ ISSN: 1735-8787 (electronic)\\ \textcolor[rgb]{0.00,0.00,0.84}{\textbf{http://www.math-analysis.org }}\\ $\frac{{}}{\rule{4.55in}{0.05in}}$}\\[.5in]} \title[Triangle inequality]{Some remarks on the triangle inequality for norms} \author[L. Maligranda]{Lech Maligranda} \address{Department of Mathematics, Lule{\aa} University of Technology, SE--971 87 Lule{\aa}, Sweden.} \email{\textcolor[rgb]{0.00,0.00,0.84}{lech@sm.luth.se}} \dedicatory{Dedicated to Professor Josip Pe\v{c}ari\'{c}\\ \vspace{.5cm}{\rm Submitted by D. E. Alspach}} \subjclass[2000]{Primary 46B20, 46B99; Secondary 51M16.} \keywords{Inequalities, normed space, norm inequality, triangle inequality, reversed triangle inequality, angular distance, Fischer--Musz\'ely equality.} \date{Received: 11 April 2008; Accepted 24 April 2008.} \begin{abstract} Remarks about strengthening of the triangle inequality and its reverse inequality in normed spaces for two and more elements are collected. There is also a discussion on Fischer--Musz\'ely equality for $n$-elements in a normed space. Some other estimates which follow from the triangle inequality are also presented. \end{abstract} \maketitle \vspace{1.5in} \end{document} .