\documentclass[12pt, reqno]{amsart} \usepackage{amsmath, amsthm, amscd, amsfonts, amssymb, graphicx, color} \usepackage[bookmarksnumbered, plainpages]{hyperref} \textheight 22.5truecm \textwidth 14.5truecm \setlength{\oddsidemargin}{0.35in}\setlength{\evensidemargin}{0.35in} \setlength{\topmargin}{-.5cm} \newtheorem{Theorem}{Theorem}[section] \newtheorem{Lemma}[Theorem]{Lemma} \newtheorem{Proposition}[Theorem]{Proposition} \newtheorem{Corollary}[Theorem]{Corollary} \theoremstyle{definition} \newtheorem{Definition}[Theorem]{Definition} \newtheorem{Example}[Theorem]{Example} %\newtheorem{xca}[theorem]{Exercise} \newtheorem{Problem}[Theorem]{Problem} \theoremstyle{remark} \newtheorem{Remark}[Theorem]{Remark} \numberwithin{equation}{section} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \def\tr{\mathop{\mathrm{tr}}\nolimits} \def\supp{\mathop{\mathrm{supp}}\nolimits} % Tr"ager \newcommand{\lsim}{{\underset{\sim}{<}}} \newcommand{\gsim}{{\underset{\sim}{>}}} \newcommand{\q}{\qquad} \newcommand{\e}{\mathbf{e}} \newcommand\x{\mathbf{x}} \newcommand\y{\mathbf{y}} \newcommand{\er}{\mathbf{e}_r} \newcommand{\Ree}{\Re\mathfrak{e}} \newcommand{\etheta}{\mathbf{e}_\theta} \newcommand{\tpsi}{{\tilde{\Psi}}} \newcommand{\rz}{\mathbb{R}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\bbS}{\mathbb{S}} \newcommand{\gd}{\mathfrak{d}} \newcommand{\gq}{\mathfrak{q}} \newcommand{\gp}{\mathfrak{p}} \newcommand{\Con}{C_0^\infty} \newcommand{\Cons}{C_{\mathcal {S},0}^\infty} \newcommand{\grad}{\nabla} \newcommand{\cf}{\mathcal {F}} \newcommand{\cs}{\mathcal {S}} \newcommand{\cg}{\mathcal {G}} \newcommand{\sa}{{{\pmb{a}}}} \newcommand{\ab}{{{\mathbf{A}}}} \newcommand{\AAA}{{\text{\aa}}} \newcommand{\AAAA}{{\text{\bf{\aa}}}} \newcommand{\B}{{\mathbf{B}}} \newcommand{\al}{{\pmb{\alpha}}} \newcommand{\dv}{{\mathbb{D}_{V}}} \newcommand{\pw}{{\mathbb{P}_{W}}} \newcommand{\dvo}{{\mathbb{D}_{V_0}}} \newcommand{\rvo}{{\mathbb{R}_{V_0}}} \newcommand{\BP}{\vspace{0.2in}} \newcommand{\tva}{{T(V,\pmb{a})}} \newcommand{\bsig}{{\pmb{\sigma}}} \newcommand{\Da}{{\mathcal D_\sa}} \newcommand{\K}{{\mathfrak{K}}} \newcommand{\sao}{{\beta^0_{\mathbf{a}}}} \newcommand{\sac}{{\beta^C_{\mathbf{a}}}} \newcommand{\beq}{\begin{equation}} \newcommand{\eeq}{\end{equation}} \newcommand{\bdm}{\begin{displaymath}} \newcommand{\edm}{\end{displaymath}} \newcommand{\ba}{\begin{align}} \newcommand{\ea}{\end{align}} \newcommand{\slim}{\mathop{{\text{s-lim}}}} % strong limit \newcommand{\osz}{\mathop{\text{{osz}}}} % oszillation %\newcommand{\supp}{\mathrm{supp}} % support \newcommand{\dist}{\mathrm{dist}} % distance %\newcommand{\e}{\mathrm{e}} \newcommand{\vare}{\varepsilon} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\xref}[1]{{\rm(}\ref{#1}{\rm)}} % Absolute value notation \newcommand{\abs}[1]{\lvert#1\rvert} \newcommand{\norm}[1]{\Vert#1\Vert} % norm %\newcommand{\tr}{\mathop{\mathrm{tr}} \nolimits}% trace \newcommand{\ind}{\mathbf{1}} \newcommand{\id}{\mathbf{1}} % identity \newcommand{\idG}{\mathbf{1}_{\calG}} % identity on G \def\dbar{{\mathchar'26\mkern-12mud}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{document} \setcounter{page}{94} \noindent\parbox{2.85cm}{\includegraphics*[keepaspectratio=true,scale=1.75]{BJMA.jpg}} \noindent\parbox{4.85in}{\hspace{0.1mm}\\[1.5cm]\noindent Banach J. Math. Anal. 2 (2008), no. 2, 94--106\\ $\frac{\rule{4.55in}{0.05in}}{{}}$\\ {\footnotesize \textcolor[rgb]{0.65,0.00,0.95}{\textsc{\textbf{\large{B}}anach \textbf{\large{J}}ournal of \textbf{\large{M}}athematical \textbf{\large{A}}nalysis}}\\ ISSN: 1735-8787 (electronic)\\ \textcolor[rgb]{0.00,0.00,0.84}{\textbf{http://www.math-analysis.org }}\\ $\frac{{}}{\rule{4.55in}{0.05in}}$}\\[.5in]} \title[On inequalities of Hardy--Sobolev type]{On inequalities of Hardy--Sobolev type} \author[A. Balinsky, W.D. Evans, D. Hundertmark, R.T. Lewis]{A. Balinsky$^1$, W. D. Evans$^2$$^{*}$, D. Hundertmark$^3$ and R. T. Lewis$^4$ } \address{$^{1, 2}$ School of Mathematics, Cardiff University, 23 Senghennydd Road, Cardiff CF24 4AG, UK.} \email{\textcolor[rgb]{0.00,0.00,0.84}{BalinskyA@cardiff.ac.uk} , \textcolor[rgb]{0.00,0.00,0.84}{EvansWD@cardiff.ac.uk}} \address{$^{3}$ Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green Street, Urbana, Illinois 61801, USA.} \email{\textcolor[rgb]{0.00,0.00,0.84}{dirk@math.uiuc.edu}} \address{$^{4}$ Department of Mathematics, University of Alabama at Birmingham, Birmingham, AL 35294-1170, USA.} \email{\textcolor[rgb]{0.00,0.00,0.84}{lewis@math.uab.edu}} \dedicatory{This paper is dedicated to Professor Josip E. Pe\v{c}ari\'{c}\\ \vspace{.5cm} {\rm Submitted by T. Riedel}} \subjclass[2000]{Primary 46E35; Secondary 35K05.} \keywords{Hardy's inequality, Sobolev's inequality, heat semigroup, Ledoux's inequality.} \date{Received: 11 April; Accepted: 20 June 2008. \newline \indent $^{*}$ Corresponding author} \begin{abstract} Hardy--Sobolev--type inequalities associated with the operator $L:=\textbf{{x}} \cdot \nabla $ are established, using an improvement to the Sobolev embedding theorem obtained by M.~Ledoux. The analysis involves the determination of the operator semigroup $\{e^{-tL^{*}L}\}_{t>0}.$ \end{abstract} \maketitle \vspace{0.5in} \end{document} .