\documentclass[12pt, reqno]{amsart} \usepackage{amsmath, amsthm, amscd, amsfonts, amssymb, graphicx, color} \usepackage[bookmarksnumbered, plainpages]{hyperref} \textheight 22.5truecm \textwidth 14.5truecm \setlength{\oddsidemargin}{0.35in}\setlength{\evensidemargin}{0.35in} \setlength{\topmargin}{-.5cm} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{xca}[theorem]{Exercise} \newtheorem{problem}[theorem]{Problem} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \numberwithin{equation}{section} \begin{document} \setcounter{page}{1} \noindent\parbox{2.85cm}{\includegraphics*[keepaspectratio=true,scale=1.75]{BJMA.jpg}} \noindent\parbox{4.85in}{\hspace{0.1mm}\\[1.5cm]\noindent Banach J. Math. Anal. 2 (2008), no. 2, 1--8\\ $\frac{\rule{4.55in}{0.05in}}{{}}$\\ {\footnotesize \textcolor[rgb]{0.65,0.00,0.95}{\textsc{\textbf{\large{B}}anach \textbf{\large{J}}ournal of \textbf{\large{M}}athematical \textbf{\large{A}}nalysis}}\\ ISSN: 1735-8787 (electronic)\\ \textcolor[rgb]{0.00,0.00,0.84}{\textbf{http://www.math-analysis.org }}\\ $\frac{{}}{\rule{4.55in}{0.05in}}$}\\[.5in]} \title{Positivity of operator-matrices of Hua-type} \author[T. Ando]{Tsuyoshi Ando} \address{Shiroishi-ku, Hongo-dori 9, Minami 4-10-805, Sapporo 003-0024, Japan.} \email{\textcolor[rgb]{0.00,0.00,0.84}{ando@es.hokudai.ac.jp}} \dedicatory{This paper is dedicated to Professor Josip E. Pe\v{c}ari\'{c}\\ \vspace{.5cm} {\rm Submitted by F. Kittaneh}} \subjclass[2000]{Primary 47B63; Secondary 47B15, 15A45.} \keywords{Positivity, Strict contraction, Operator-matrix, Hua theorem.} \date{Received: 1 March 2008; Accepted 25 March 2008.} \begin{abstract} Let $A_j\,\,(j = 1, 2,\ldots , n)$ be strict contractions on a Hilbert space. We study an $n \times n$ operator-matrix: \[\textbf{H}_n(A_1,A_2,\ldots ,A_n) = [(I - A^*_j A_i)^{-1}]^n_{i,j=1}.\] For the case $n = 2$, Hua [Inequalities involving determinants, Acta Math. Sinica, 5 (1955), 463--470 (in Chinese)] proved positivity, i.e., positive semi-definiteness of $\textbf{H}_2(A_1,A_2)$. This is, however, not always true for $n = 3$. First we generalize a known condition which guarantees positivity of $\textbf{H}_n$. Our main result is that positivity of $\textbf{H}_n$ is preserved under the operator M\"obius map of the open unit disc $\mathcal D$ of strict contractions. \end{abstract} \maketitle \vspace{1.5in} \end{document} .