%------------------------------------------------------------------------------ % Beginning of journal.tex %------------------------------------------------------------------------------ % \documentclass[12pt, reqno]{amsart} \usepackage{amsmath, amsthm, amscd, amsfonts, amssymb, graphicx, color} \usepackage[bookmarksnumbered,plainpages]{hyperref} \textheight 22.5truecm \textwidth 14.5truecm \setlength{\oddsidemargin}{0.35in}\setlength{\evensidemargin}{0.35in} \setlength{\topmargin}{-.5cm} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{xca}[theorem]{Exercise} \newtheorem{problem}[theorem]{Problem} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \numberwithin{equation}{section} \begin{document} \setcounter{page}{16} \parbox{2.75cm}{\includegraphics*[keepaspectratio=true,scale=1.6]{BJMA.jpg}} \parbox{4.75in}{\hspace{0.1mm}\\[1.5cm]\noindent Banach J. Math. Anal. 2 (2008), no. 1, 16--20\\ $\frac{\rule{4in}{0.05in}}{{}}$\\ {\footnotesize \textcolor[rgb]{0.65,0.00,0.95}{\textsc{\textbf{\large{B}}anach \textbf{\large{J}}ournal of \textbf{\large{M}}athematical \textbf{\large{A}}nalysis}}\\ ISSN: 1735-8787 (electronic)\\ \textcolor[rgb]{0.00,0.00,0.84}{\textbf{http://www.math-analysis.org }}\\ $\frac{\rule{4in}{0.05in}}{{}}$}\\[.5in]} \title[Hardy--Hilbert's integral inequalities]{A study On some new types of Hardy--Hilbert's integral inequalities} \author[W.T. Sulaiman]{Waad T. Sulaiman$^1$} \address{$^{1}$ Department of Mathematics, College of Computer Sciences and Mathematics, University of Mosul, Iraq.} \email{\textcolor[rgb]{0.00,0.00,0.84}{waadsulaiman@hotmail.com}} \dedicatory{{\rm Submitted by F. Kittaneh}} \subjclass[2000]{Primary 54C05; Secondary 46A03, 46A55.} \keywords{Convex, balanced, absorbing, basis, empty interior, non-continuous linear functional.} \date{Received: 8 February 2007; Accepted: 20 February 2007.} \begin{abstract} Some new kinds of Hardy--Hilbert's integral inequality in which the weight function is homogeneous function are given. Other results are also obtained. \end{abstract} \maketitle \section{Introduction} \noindent Let $f,g\geq0$ satisfy \begin{eqnarray*} 0 < \int_0^\infty f ^{2}(t)dt<\infty \text{ and } 0<\int_0^\infty g ^{2}(t)dt<\infty, \end{eqnarray*} then \begin{eqnarray}\label{H.eq} \int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x+y}dxdy<\pi\left(\int_0^\infty f^2(t)dt \int_0^\infty g^2(t)dt \right)^{1/2}\, , \end{eqnarray} where the constant factor $\pi$ is the best possible (cf. Hardy et al. \cite{H-L-P}). Inequality (\ref{H.eq}) is well known as Hilbert's integral inequality. This inequality had been extended by Hardy \cite{HAR} as follows: If $p>1$, $\frac{1}{p}+\frac{1}{q}=1$, $f,g\geq0$ satisfy \begin{eqnarray*} 0<\int_0^\infty f^p(t)dt<\infty \text{ and } 0<\int_0^\infty g^q(t)dt<\infty, \end{eqnarray*} then \begin{eqnarray}\label{H-H.ii} \int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x+y}dxdy<\frac{\pi}{sin({\pi/p})}\left(\int_0^\infty f^p(t)dt\right)^{1/p}\left(\int_0^\infty g^q(t)dt\right)^{1/q}, \end{eqnarray} where the constant factor $\frac{\pi}{sin(\pi/p)}$ is the best possible. Inequality (\ref{H-H.ii}) is called Hardy--Hilbert's integral inequality and is important in analysis and applications (cf. Mitrinovic et al. \cite{M-P-F}). B. Yang gave the following extension of (\ref{H-H.ii}) as follows : Theorem \cite{YAN}. If $ \lambda > 2-\min\{p,q\}$ and $f,g\geq0$ satisfy \begin{eqnarray*} 0<\int_0^\infty t^{1-\lambda}f^p(t)dt<\infty \text{ and } 0<\int_0^\infty t^{1-\lambda}g^q(t)dt<\infty, \end{eqnarray*} then \begin{eqnarray*} \int_0^\infty \int_0^\infty \frac{f(x)g(y)}{(x+y)^\lambda}dxdy0)\,.\] The object of this paper is that to give some new inequalities similar to that of Hardy--Hilbert's integral inequality. \section{Main result} \begin{lemma}\label{lem} Let $K(t,1), K(1,t)$ be positive increasing functions, $0< \mu+1\leq\alpha$. Set for $s\geq1$, \begin{eqnarray*} f(s)=s^{-\alpha}\int_0^s\frac{t^\mu}{K(1,t)}dt,\qquad g(s)=s^{-\alpha}\int_0^s\frac{t^\mu}{K(t,1)}dt. \end{eqnarray*} Then \[f(s)\leq f(1), g(s)\leq g(1).\] \end{lemma} \begin{proof} We have \begin{eqnarray*} f'(s)&=& s^{-\alpha}\frac{s^\mu}{K(1,s)}-\alpha s^{-\alpha-1}\int_0^s{\frac{t^\mu}{K(1,t)}dt}\\ &\leq& \frac{s^{\mu-\alpha}}{K(1,s)}- \frac{\alpha s^{-\alpha-1}}{K(1,s)} \int_0^s{t^\mu dt}\\ &=& \frac{s^{\mu-\alpha}}{K(1,s)} \left( 1-\frac{\alpha}{\mu+1}\right)\leq 0. \end{eqnarray*} This shows that $f$ is nonincreasing and hence $f(s)\leq f(1)$. The other part has a similar proof. \end{proof} The following is our main result \begin{theorem}\label{main} Let $f,g\geq0$, $K(u,v)$ be positive, increasing, homogeneous function of degree $\lambda$, $0<\lambda \leq\min\{(1-b){q/p}, (1-a){p/q}\}$, $a,b>0$, $p>1$, $\frac{1}{p}+\frac{1}{q}=1.$ Set \[F(u)=\int_0^uf(t)dt, \qquad G(v)=\int_0^vg(t)dt.\] Then \begin{eqnarray*} \int_0^T\int_0^T\frac{F(u)G(v)}{K(u,v)}dudv&\leq& T^\alpha\sqrt[p]{pK_1}\sqrt[q]{qK_2}\left(\int_0^T(T-t)F^{p-1}(t)f(t)dt\right)^{1/p}\nonumber \\ &&\times \left(\int_0^T(T-t)G^{q-1}(t)g(t)dt\right)^{1/q}\,, \end{eqnarray*} where \[K_1=\int_0^1\frac{t^{a-1}}{K(1,t)}dt, K_2=\int_0^1\frac{t^{b-1}}{K(t,1)}dt.\] \end{theorem} \begin{proof} \begin{eqnarray*} \int_0^T\int_0^T\frac{F(u)G(v)}{K(u,v)}dudv&= \int_0^T\int_0^T\frac{F(u)v^{\frac{a-1}{p}}}{u^{\frac{b-1}{q}}K^{1/p}(u,v)}\times \frac{G(v)u^{\frac{b-1}{q}}}{v^{\frac{a-1}{p}}K^{1/q}(u,v)}dudv \\ &\leq\left(\int_0^T\int_0^T\frac{F^p(u)v^{a-1}}{u^{(b-1)p/q}K(u,v)}dudv\right)^{1/p}\\ &\times\left(\int_0^T\int_0^T\frac{G^q(v)u^{b-1}}{v^{(a-1)q/p}K(u,v)}dudv\right)^{1/q} \\ &=M^{1/p}N^{1/q}. \end{eqnarray*} We first consider \[M=\int_0^Tu^{(1-b)p/q}F^p(u)du\int_0^T\frac{v^{a-1}}{K(u,v)}dv.\] Observe that on putting $v=uy, dv=udy, 0\leq y\leq t/u$, we have, in view of Lemma \ref{lem}, by writing $\alpha=a+(1-b)p/q-\lambda$, \begin{eqnarray*} \int_0^T\frac{v^{a-1}}{K(u,v)}dv &=\int_0^{T/u}\frac{(uy)^{a-1}u}{K(u,uy)}dy =u^{a-\lambda}\int_0^{T/u}\frac{y^{a-1}}{K(1,y)}dy\\ &= u^{a-\lambda}\left(\frac{T}{u}\right)^\alpha\left(\frac{T}{u}\right)^{-\alpha}\int_0^{T/u}\frac{y^{a-1}}{K(1,y)}dy\\ &\leq T^\alpha u^{a-\lambda-\alpha}\int_0^1\frac{y^{a-1}}{K(1,y)}dy=T^\alpha K_1u^{a-\lambda-\alpha}. \end{eqnarray*} By above we obtain \begin{eqnarray*} M &\leq T^\alpha K_1 \int_0^T u^{a+(1-b)p/q-\lambda-\alpha}F^p(u)du\\ &= T^\alpha K_1 \int_0^T F^p(u)du.\\ \end{eqnarray*} As \[F^p(u)=\int_0^u\left(F^p(t)\right)'dt=p\int_0^u F^{p-1}(t)f(t)dt,\] we have \begin{eqnarray*} M&\leq pT^\alpha K_1\int_0^T\int_0^u F^{p-1}(t)f(t)dtdu\\ &= pT^\alpha K_1 \int_0^T(T-t)F^{p-1}(t)f(t)dt.\\ \end{eqnarray*} Similarly, the other part follows by using Lemma \ref{lem}, replacing $\alpha$ by $\beta$, where $\beta=b+(1-a)q/p-\lambda$ to obtain \[N\leq qT^\alpha K_2\int_0^T(T-t)G^{q-1}(t)g(t)dt.\] This completes the proof of the theorem. \end{proof} \section{Applications} \begin{corollary} By an application of Theorem {\rm \ref{main}}, for the special case $a=b =\lambda/2$, we have \begin{eqnarray*} \begin{split} \int_0^T\int_0^T\frac{F(u)G(v)}{K(u,v)}dudv\leq T^\alpha\sqrt[p]{pK_1}\sqrt[q]{qK_3}\left(\int_0^T(T-t)F^{p-1}(t)f(t)dt \right)^{1/p}\times\\ \left(\int_0^T(T-t)G^{q-1}(t)g(t)dt\right)^{1/q}\,, \end{split} \end{eqnarray*} where \[K_3=\int_1^\infty\frac{t^{\frac{\lambda}{2}-1}}{K(1,t)}dt,\] Furthermore, when $K(u,v)=(u+v)^\lambda$, we have \begin{eqnarray*} \begin{split} \int_0^T\int_0^T\frac{F(u)G(v)}{(u+v)^\lambda}dudv\leq T^\alpha B\left(\frac{\lambda}{2},\frac{\lambda}{2}\right)\sqrt[p]{p} \sqrt[q]{q}\left(\int_0^T(T-t)F^{p-1}(t)f(t)dt\right)^{1/p} \times\\ \left(\int_0^T(T-t)G^{q-1}(t)g(t)dt\right)^{1/q}\,. \end{split} \end{eqnarray*} \begin{proof} For $a=b=\lambda/2$, we have $K_2=K_3$ as \[ \int_0^1\frac{t^{\frac{\lambda}{2}-1}}{K(t,1)}=\int_0^1\frac{t^{\frac{\lambda}{2}-1}}{K(t,tt^{-1})}dt= \int_0^1\frac{t^{-\frac{\lambda}{2}-1}}{K(1,t^{-1})}dt=\int_1^\infty\frac{t^{\frac{\lambda}{2}-1}}{K(1,t)}dt.\] The other part follows from the fact that for $K(1,t)=(1+t)^\lambda,$ \[K_1=K_2=K_3=B\left(\frac{\lambda}{2},\frac{\lambda}{2}\right)\,.\] \end{proof} \end{corollary} \begin{corollary} By an application of Theorem {\rm \ref{main}} with $K(u,v)=u^\lambda+v^\lambda$, we have \begin{eqnarray*} \begin{split} \int_0^T\int_0^T\frac{F(u)G(v)}{u^\lambda+v^\lambda}dudv\leq T^\alpha \sqrt[p]{pK_a}\sqrt[q]{qK_b} \left(\int_0^T(T-t)F^{p-1}(t)f(t)dt\right)^{1/p}\times\\ \left(\int_0^T(T-t)G^{q-1}(t)g(t)dt\right)^{1/q}, \end{split} \end{eqnarray*} where \[K_r=\int_0^1\frac{t^{r-1}}{1+t^\lambda}dt\qquad (r\in\{a,b\}).\] \end{corollary} %---------------------------------------------------------------------------------------% \bibliographystyle{amsplain} \begin{thebibliography}{10} \bibitem{HAR} G. H. Hardy, \textit{Note on a theorem of Hilbert concerning series of positive terms}, Proc. Math. Soc. \textbf{23(2)} (1925), Records of Proc. XLV-XLVI. \bibitem{H-L-P} G. H. Hardy, J. E. Littlewood and G. Polya, \textit{Inequalities}, Cambridge University Press, Cambridge, 1952. \bibitem{M-P-F}D. S. Mitrinovic, J. E. Pecaric and A. M. Fink, \textit{Inequalities involving functions and their integrals and derivatives}, Kluwer Academic Publishers, Bosten, 1991. \bibitem{YAN}B. Yang, \textit{On Hardy--Hilbert's integral inequality}, J. Math. Anal. Appl. \textbf{261} (2001), 295--306. \end{thebibliography} \end{document} %------------------------------------------------------------------------------ % End of journal.tex %------------------------------------------------------------------------------ .