\documentclass[12pt, reqno]{amsart} \usepackage{amsmath, amsthm, amscd, amsfonts, amssymb, graphicx, color} \usepackage[bookmarksnumbered, plainpages]{hyperref} \textheight 22.5truecm \textwidth 14.5truecm \setlength{\oddsidemargin}{0.35in}\setlength{\evensidemargin}{0.35in} \setlength{\topmargin}{-.5cm} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{xca}[theorem]{Exercise} \newtheorem{problem}[theorem]{Problem} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \numberwithin{equation}{section} \begin{document} \setcounter{page}{53} \noindent\parbox{2.85cm}{\includegraphics*[keepaspectratio=true,scale=1.75]{BJMA.jpg}} \noindent\parbox{4.85in}{\hspace{0.1mm}\\[1.5cm]\noindent Banach J. Math. Anal. 2 (2008), no. 1, 53--58\\ $\frac{\rule{4.55in}{0.05in}}{{}}$\\ {\footnotesize \textcolor[rgb]{0.65,0.00,0.95}{\textsc{\textbf{\large{B}}anach \textbf{\large{J}}ournal of \textbf{\large{M}}athematical \textbf{\large{A}}nalysis}}\\ ISSN: 1735-8787 (electronic)\\ \textcolor[rgb]{0.00,0.00,0.84}{\textbf{http://www.math-analysis.org }}\\ $\frac{{}}{\rule{4.55in}{0.05in}}$}\\[.5in]} \title[Univalence conditions for integral operators]{Univalence conditions for some general integral operators} \author[D. Breaz, V. Pescar]{Daniel Breaz $^1$$^{*}$ and Pescar Virgil $^2$} \address{$^{1}$ Department of Mathematics, 1 Decembrie 1918 University of Alba Iulia, str. N. Iorga, No. 11--13, Alba Iulia, 510009, Romania.} \email{\textcolor[rgb]{0.00,0.00,0.84}{dbreaz@uab.ro}} \address{$^{2}$ Department of Mathematics, Department of Mathematics, "Transilvania" University of Bra\c{s}ov, 2200, Bra\c{s}ov, Romania.} \email{\textcolor[rgb]{0.00,0.00,0.84}{virgilpescar@unitbv.ro}} \dedicatory{{\rm Submitted by Th. M. Rassias}} \subjclass[2000]{30C45.} \keywords{Integral operator, univalent functions.} \date{Received: 5 April 2008; Accepted 28 April 2008. \newline \indent $^{*}$ Corresponding author} \begin{abstract} We consider two general integral operators where are the extensions of the Kim--Merkes operator and Pfaltzgraff operator. We will proved in this paper the univalent conditions for these operators when we make some restrictions about the functions from your definitions. \end{abstract} \maketitle \vspace{1.5in} \end{document} .