%------------------------------------------------------------------------------ % Here please write the date of submission of paper or its revisions: %------------------------------------------------------------------------------ % \documentclass[12pt, reqno]{amsart} \usepackage{amsmath, amsthm, amscd, amsfonts, amssymb, graphicx, color} \usepackage[bookmarksnumbered, colorlinks, plainpages]{hyperref} \hypersetup{colorlinks=true,linkcolor=red, anchorcolor=green, citecolor=cyan, urlcolor=red, filecolor=magenta, pdftoolbar=true} \textheight 22.5truecm \textwidth 14.5truecm \setlength{\oddsidemargin}{0.35in}\setlength{\evensidemargin}{0.35in} \setlength{\topmargin}{-.5cm} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{exercise}[theorem]{Exercise} \newtheorem{conclusion}[theorem]{Conclusion} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{criterion}[theorem]{Criterion} \newtheorem{summary}[theorem]{Summary} \newtheorem{axiom}[theorem]{Axiom} \newtheorem{problem}[theorem]{Problem} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \numberwithin{equation}{section} \begin{document} \setcounter{page}{1} \title[Short Title]{Title of Paper} \author[F. Author, S. Author, T. Author]{First Author,$^1$ Second Author,$^1$ \MakeLowercase{and} Third Author$^2$$^{*}$} \address{$^{1}$Department of Mathematics, University of AAAA, BBBB 654321, CCCC, India.} \email{\textcolor[rgb]{0.00,0.00,0.84}{first1@afa.ac.ir; first2@afa.ac.ir}} \address{$^{2}$Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran; \newline Tusi Mathematical Research Group (TMRG), Mashhad, Iran.} \email{\textcolor[rgb]{0.00,0.00,0.84}{second@afa.ac.ir}} %\dedicatory{This paper is dedicated to Professor ABCD} \let\thefootnote\relax\footnote{Copyright 2016 by the Tusi Mathematical Research Group.} \subjclass[2010]{Primary 39B82; Secondary 44B20, 46C05.} \keywords{convexity, stability, functional equation, Hahn--Banach theorem.} \date{Received: xxxxxx; Accepted: zzzzzz. \newline \indent $^{*}$Corresponding author} \begin{abstract} The journal is an author-prepared journal, which means that authors are responsible for the proper formatting of manuscripts by using the style file of the journal. The number of papers/books in the list of references must be at most 1.5 times the number of pages of the paper. The total number of self-citations must be at most 0.4 times the number of pages of the paper. \end{abstract} \maketitle \section{Introduction and preliminaries} At present, OAT is an open access journal. It is published by the Tusi Math. Research Group. By submitting a manuscript, the author(s) agree that the copyright for the article is transferred to the publisher, if and when, the paper is accepted for publication. \noindent Here you should state the introduction, preliminaries and your notation. Authors are required to state clearly the contribution of the paper and its significance in the introduction. There should be some survey of relevant literature. \subsection{Instructions for author(s)} Manuscripts should be typeset in English with double spacing by using AMS-LaTex. The authors are encouraged to use the journal style file that has been developed for LaTeX2e standard and can be found at the website of the journal. While you are preparing your paper, please take care of the following: \begin{enumerate} \item Abstract: 200 words or less with no reference number therein.\\ \item MSC2010: Primary only one item; and Secondary at least one item (We need at least one in MSC43, MSC46 or MSC47). \\ \item Keywords: At least 3 items and at most 5 items.\\ \item Authors: Full names, mailing addresses and emails of all authors.\\ \item Each Theorem, Proposition, Corollary, Lemma, Definition, Example, etc should be typeset in its respective environment such as\\ $\backslash begin\{theorem\}... \backslash end\{theorem\}$ and so on. \item Margins: A long formula should be broken into two or more lines. Empty spaces in the text should be removed.\\ \item Tags (Formula Numbers): Equations and numbered items referred to in the text must be labeled by $\backslash label\{A\}$. References to them must be typeset by using $\backslash eqref\{A\}$. Remove unused tags. Manual numbering of equations or sections must be avoided. \\ \item Acknowledgments: At the end of paper but preceding to References.\\ \item References: Use $\backslash cite\{MM\}$ to refer to the specific book/paper \cite{MM} (with $\backslash bibitem\{MM\}$) in the text. Remove unused references. References should be listed in the alphabetical order according to the surnames of the first author at the end of the paper and should be cited in the text as, e.g., \cite{MUR} or \cite[Theorem 4.2]{MUR}, etc.\\ \item Abbreviations: Abbreviations of titles of periodicals/books should be given by using Math. Reviews, see Abbreviations of names of serials or MRLookup.\\ \item Citations: The number of papers/books in the list of references must be at most 1.5 times the number of pages of the paper. The total number of self-citations must be at most 0.4 times the number of pages of the paper. \end{enumerate} \section{Main results} The following is an example of a definition. \begin{definition} Let ${\mathcal X}$ be a real or complex linear space. A mapping $\| \cdot \| :{\mathcal X}\rightarrow \left[ 0,\infty \right) $ is called a $2$-norm on ${\mathcal X}$\ if it satisfies the following conditions: \begin{enumerate} \item $\| x\| =0\Leftrightarrow x=0,$ \item $\| \lambda x\| =\| \lambda \| \| x\| \ \ $for all $x\in {\mathcal X}$ and all scalar $\lambda ,$ \item $\| x+y\| ^{2}\leq 2\left( \| x\| ^{2}+\| y\| ^{2}\right) \ $for all $x,y\in {\mathcal X}.$ \end{enumerate} \end{definition} %---------------------------------------------------------------------------------------% Here is an example of a table. \begin{table}[ht] \caption{}\label{eqtable} \renewcommand\arraystretch{1.5} \noindent\[ \begin{array}{|c|c|c|} \hline 1&2&3\\ \hline f(x)&g(x)&h(x)\\ \hline a&b&c\\ \hline \end{array} \] \end{table} This is an example of a matrix \begin{equation*} \begin{bmatrix} 1 & -2 \\ 3 & 5 \end{bmatrix} \end{equation*} The following is an example of an example. %---------------------------------------------------------------------------------------% \begin{example} Let $\theta:{\mathcal A}\to {\mathcal A}$ be a homomorphism. Define $\varphi:{\mathcal A}\to {\mathcal A}$ by $\varphi(a)=a_{0}\theta(a)$. Then we have \begin{eqnarray}\label{2.1} \varphi(a_{1}\ldots a_{n})&=&a_{0}\theta(a_{1}\ldots a_{n})\nonumber\\ &=& \varphi(a_{1})\ldots\varphi(a_{n}). \end{eqnarray} Hence $\varphi$ is an $n$-homomorphism. \end{example} %---------------------------------------------------------------------------------------% The following is an example of a theorem and a proof. Please note how to refer to a formula. %---------------------------------------------------------------------------------------% \begin{theorem}\label{main} If ${\bf B}$ is an open ball of a real inner product space ${\mathcal X}$ of dimension greater than $1$, ${\mathcal Y}$ is a real sequentially complete linear topological space, and $f: {\bf B}\setminus\{0\} \to {\mathcal Y}$ is orthogonally generalized Jensen mapping with parameters $s=t>\frac{1}{\sqrt{2}} \, r$, then there exist additive mappings $T: {\mathcal X}\to {\mathcal Y}$ and $b:{\mathbb R}_+\to {\mathcal Y}$ such that $f(x) = T(x) + b\left (\|x\|^2\right )$ for all $x\in {\bf B}\setminus \{0\}$. \end{theorem} %---------------------------------------------------------------------------------------% \begin{proof} First note that if $f$ is a generalized Jensen mapping with parameters $t=s \geq r $, then \begin{align}\label{additive} f(\lambda(x+y))&=\lambda f(x) + \lambda f(y)\nonumber\\ &\leq \lambda (f(x) + f(y))\nonumber\\ &= f(x) + f(y) \end{align} for some $\lambda \geq 1$ and all $x, y\in {\bf B}\setminus \{0\}$ such that $x \perp y$. Now the result can be deduced from \eqref{additive}. \end{proof} %---------------------------------------------------------------------------------------% The following is an example of a remark. %---------------------------------------------------------------------------------------% \begin{remark} One can easily conclude that $g$ is continuous by using Theorem \ref{main}. \end{remark} %---------------------------------------------------------------------------------------% Again, note how we refer to Theorem \ref{main} and formula \eqref{2.1}. \\ \\ {\bf Acknowledgments.} Acknowledgments may be placed at the end of the text, immediately preceding the references. \bibliographystyle{amsplain} \begin{thebibliography}{99} \bibitem{haag1} U. Haagerup, \textit{Solution of the similarity problem for cylic representations of $C^*$-algebras}, Ann. of Math. (2) {\bf 118} (1983), no. 2, 215--240. \bibitem{MUR} G. J. Murphy, \textit{$C^*$-Algebras and Operator Theory}, Academic Press, Boston, 1990. \bibitem{MM} M. Mirzavaziri and M. S. Moslehian, \textit{Automatic continuity of $\sigma$-derivations in $C^*$-algebras}, Proc. Amer. Math. Soc. \textbf{134} (2006), no. 11, 3319--3327. \bibitem{H} M. S. Moslehian, \textit{Ky Fan inequalities}, Linear Multilinear Algebra, arXiv:1108.1467v2 (to appear). \bibitem{RAS} Th. M. Rassias, \textit{Stability of the generalized orthogonality functional equation}, Inner product spaces and applications, 219--240, Pitman Res. Notes Math. Ser., 376, Longman, Harlow, 1997. \bibitem{BRV} J. Bichon, A. De Rijdt, and S. Vaes, \textit{Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups}, Comm. Math. Phys. \textbf{262} (2006), no. 3, 703--728. \end{thebibliography} \end{document} %------------------------------------------------------------------------------ % End of journal.tex %------------------------------------------------------------------------------ .