%------------------------------------------------------------------------------ % Received: 14 December 2011 / Revised: 13 February 2012 / Accepted: date %------------------------------------------------------------------------------ % \documentclass[12pt, reqno]{amsart} \usepackage{amsmath, amsthm, amscd, amsfonts, amssymb, graphicx, color} \usepackage[bookmarksnumbered, colorlinks, plainpages]{hyperref} \textheight 22.5truecm \textwidth 14.5truecm \setlength{\oddsidemargin}{0.35in}\setlength{\evensidemargin}{0.35in} \setlength{\topmargin}{-.5cm} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{exercise}[theorem]{Exercise} \newtheorem{conclusion}[theorem]{Conclusion} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{criterion}[theorem]{Criterion} \newtheorem{summary}[theorem]{Summary} \newtheorem{axiom}[theorem]{Axiom} \newtheorem{problem}[theorem]{Problem} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \numberwithin{equation}{section} \input{mathrsfs.sty} \begin{document} \setcounter{page}{100} \noindent\parbox{2.95cm}{\includegraphics*[keepaspectratio=true,scale=0.125]{AFA.jpg}} \noindent\parbox{4.85in}{\hspace{0.1mm}\\[1.5cm]\noindent \qquad Ann. Funct. Anal. 3 (2012), no. 1, 100--108\\ {\footnotesize \qquad \textsc{\textbf{$\mathscr{A}$}nnals of \textbf{$\mathscr{F}$}unctional \textbf{$\mathscr{A}$}nalysis}\\ \qquad ISSN: 2008-8752 (electronic)\\ \qquad URL: \textcolor[rgb]{0.00,0.00,0.99}{www.emis.de/journals/AFA/} }\\[.5in]} \title[The k-rank numerical radii]{The k-rank numerical radii} \author[A. Aretaki, J. Maroulas]{Aikaterini Aretaki$^1$ and John Maroulas$^2$$^{*}$} \address{$^{1}$ National Technical University of Athens, Department of Mathematics, Zografou Campus, Athens 15780, Greece.} \email{\textcolor[rgb]{0.00,0.00,0.84}{kathy@mail.ntua.gr}} \address{$^{2}$ National Technical University of Athens, Department of Mathematics, Zografou Campus, Athens 15780, Greece.} \email{\textcolor[rgb]{0.00,0.00,0.84}{maroulas@math.ntua.gr}} \dedicatory{{\rm Communicated by V. Muller}} \subjclass[2010]{Primary 47A12; Secondary 15A60.} \keywords{k-rank numerical range, k-rank numerical radius.} \date{Received: 14 December 2011; Accepted: 31 January 2012. \newline \indent $^{*}$ Corresponding author} \begin{abstract} The $k$-rank numerical range $\Lambda_{k}(A)$ is expressed via an inter\-section of any countable family of numerical ranges $\{F(M^{*}_{\nu}AM_{\nu})\}_{\nu\in\mathbb{N}}$ with respect to $n\times (n-k+1)$ isometries $M_{\nu}$. This implication for $\Lambda_{k}(A)$ provides further ela\-boration of the $k$-rank numerical radii of $A$. \end{abstract} \maketitle \section{Introduction}\label{intro} \noindent Let $\mathcal{M}_{n}(\mathbb{C})$ be the algebra of $n\times n$ complex matrices and $k\geq 1$ be a positive integer. The \emph{k-rank numerical range} $\Lambda_{k}(A)$ of a matrix $A\in\mathcal{M}_{n}$ is defined by \begin{eqnarray*} \nonumber\Lambda_{k}(A) & = & \{\lambda\in\mathbb{C} : X^{*}AX=\lambda I_{k}\,\, \textrm{for}\,\, \textrm{some}\,\, X\in\mathcal{X}_{k}\} \\ & = & \{\lambda\in\mathbb{C} : PAP=\lambda P\,\, \mathrm{for}\,\, \mathrm{some}\,\, P\in\mathcal{Y}_{k}\}, \end{eqnarray*} where $\mathcal{X}_{k}=\{X\in\mathcal{M}_{n,k}:\,\,X^{*}X=I_{k}\}$ and $\mathcal{Y}_{k}=\{P\in\mathcal{M}_{n}: P=XX^{*}, X\in\mathcal{X}_{k}\}$. Note that $\Lambda_{k}(A)$ has been introduced as a versatile tool to solving a fundamental error correction problem in quantum computing \cite{Aretaki,Aret,Poon-Li-Sze,Li-Sze,Hugo}. For $k=1$, $\Lambda_{k}(A)$ reduces to the classical \emph{numerical range} of a matrix $A$, \[ \Lambda_{1}(A)\equiv F(A)=\{ x^{*}Ax : x\in \mathbb{C}^{n}, \,x^{*}x=1\}, \] which is known to be a compact and convex subset of $\mathbb{C}$ \cite{H.J.T}, as well as the same properties hold for the set $\Lambda_{k}(A)$, for $k>1$ \cite{Li-Sze,Hugo}. Associated with $\Lambda_{k}(A)$ are the \textit{k-rank numerical radius} $r_{k}(A)$ and the \emph{inner k-rank numerical radius} $\widetilde{r}_{k}(A)$, defined respectively, by \[ r_{k}(A)=\max{\{|z|: z\in\partial\Lambda_{k}(A)\}}\,\,\,\,\textrm{and}\,\,\,\,\widetilde{r}_{k}(A)=\min{\{|z|: z\in\partial\Lambda_{k}(A)\}}. \] For $k=1$, they yield the \textit{numerical radius} and the \emph{inner numerical radius}, \[ r(A)=\max{\{|z|: z\in\partial F(A)\}}\,\,\,\,\textrm{and}\,\,\,\,\widetilde{r}(A)=\min{\{|z|: z\in\partial F(A)\}}, \] respectively. In the first section of this paper, $\Lambda_{k}(A)$ is proved to coincide with an inde\-finite intersection of numerical ranges of all the compressions of $A\in\mathcal{M}_{n}$ to $(n-k+1)$-dimensional subspaces, which has been also used in \cite{Aretaki,Aret}. Further elaboration led us to reformulate $\Lambda_{k}(A)$ in terms of an intersection of a countable family of numerical ranges. This result provides additional characterizations of $r_{k}(A)$ and $\widetilde{r}_{k}(A)$, which are presented in section 3. \section{Alternative expressions of $\Lambda_{k}(A)$}\label{sec:1} Initially, the higher rank numerical range $\Lambda_{k}(A)$ is proved to be equal to an infinite intersection of numerical ranges. \begin{theorem}\label{th1} Let $A\in\mathcal{M}_{n}(\mathbb{C})$. Then \[ \Lambda_{k}(A)=\bigcap_{M\in\mathcal{X}_{n-k+1}}{F(M^{*}AM)}=\bigcap_{P\in\mathcal{Y}_{n-k+1}}{F(PAP)}. \] \end{theorem} \begin{proof} Denoting by $\lambda_{1}(H)\geq \ldots \geq \lambda_{n}(H)$ the decreasingly ordered eigenvalues of a hermitian matrix $H\in\mathcal{M}_{n}(\mathbb{C})$, we have \cite{Li-Sze} \[ \Lambda_{k}(A)=\bigcap_{\theta\in[0, 2\pi)}{e^{-\mathrm{i}\theta}\{z\in\mathbb{C} : \mathrm{Re} z \leq \lambda_{k}(H(e^{\mathrm{i}\theta}A))\}} \] where $H(\cdot)$ is the hermitian part of a matrix. Moreover, by Courant-Fisher theorem, we have \[ \lambda_{k}(H(e^{\mathrm{i}\theta}A))=\min_{\dim \mathcal{S}=n-k+1}{\max_{\substack{x\in \mathcal{S}\\ \|x\|=1}}{x^{*}H(e^{\mathrm{i}\theta}A)x}}. \] Denoting by $\mathcal{S}=span\{u_{1}, \ldots, u_{n-k+1}\}$, where $u_{i}\in\mathbb{C}^{n}$, $i=1, \ldots, n-k+1$ are orthonormal vectors, then any unit vector $x\in\mathcal{S}$ is written in the form $x=My$, where $M=\begin{bmatrix} u_{1} & \cdots & u_{n-k+1} \\ \end{bmatrix}\in\mathcal{X}_{n-k+1}$ and $y\in\mathbb{C}^{n-k+1}$ is unit. Hence, we have \begin{eqnarray*} % \nonumber to remove numbering (before each equation) \lambda_{k}(H(e^{\mathrm{i}\theta}A)) & = & \min_{M}{\max_{\substack{y\in \mathbb{C}^{n-k+1}\\ \|y\|=1}}{y^{*}M^{*}H(e^{\mathrm{i}\theta}A)My}}\\ & = & \min_{M}{\max_{\substack{y\in \mathbb{C}^{n-k+1}\\ \|y\|=1}}{y^{*}H(e^{\mathrm{i}\theta}M^{*}AM)y}} \\ & = & \min_{M}{\lambda_{1}(H(e^{\mathrm{i}\theta}M^{*}AM))} \end{eqnarray*} and consequently \begin{eqnarray*} \Lambda_{k}(A) & = & \bigcap_{\theta}{e^{-\mathrm{i}\theta}\{z\in\mathbb{C} : \mathrm{Re}z \leq \min_{M}{\lambda_{1}(H(e^{\mathrm{i}\theta}M^{*}AM))}\}}\\ & = & \bigcap_{M}{\bigcap_{\theta}{e^{-\mathrm{i}\theta}\{z\in\mathbb{C} : \mathrm{Re}z \leq \lambda_{1}(H(e^{\mathrm{i}\theta}M^{*}AM))\}}}\\ & = & \bigcap_{M\in\mathcal{X}_{n-k+1}}{F(M^{*}AM)}. \end{eqnarray*} Moreover, if we consider the $(n-k+1)$-rank orthogonal projection $P=MM^{*}$ of $\mathbb{C}^{n}$ onto the aforementioned space $\mathcal{S}$, then $x=Px$, for $x\in\mathcal{S}$ and $P\hat{x}=0$, for $\hat{x}\notin\mathcal{S}$. Hence, we have \[ \Lambda_{k}(A)=\bigcap_{P\in\mathcal{Y}_{n-k+1}}{F(PAP)}. \] \end{proof} At this point, we should note that Theorem \ref{th1} provides a different and independent characterization of $\Lambda_{k}(A)$ than the one given in \cite[Cor. 4.9]{Poon-Li-Sze}. We focus on the expression of $\Lambda_{k}(A)$ via the numerical ranges $F(M^{*}AM)$ (or $F(PAP)$), since it represents a more useful and adva\-ntageous procedure to determine and approximate the boundary of $\Lambda_{k}(A)$ numerically. In addition, Theorem \ref{th1} verifies the ``\emph{convexity of $\Lambda_{k}(A)$}'' through the convexi\-ty of the numerical ranges $F(M^{*}AM)$ (or $F(PAP)$), which is ensured by the Toeplitz-Hausdorff theorem. A different way of indicating that $\Lambda_{k}(A)$ is convex, is developed in \cite{Hugo}. For $k=n$, clearly $\Lambda_{n}(A)=\bigcap_{x\in\mathbb{C}^{n}, \|x\|=1}F(x^{*}Ax)$ and should be $\Lambda_{n}(A)\neq\emptyset$ \emph{precisely} when $A$ is scalar. Motivated by the above, we present the main result of our paper, redescribing the higher rank numeri\-cal range as \textit{a countable intersection of numerical ranges}. \begin{theorem}\label{th2} Let $A\in\mathcal{M}_{n}$. Then for any countable family of orthogonal projections $\{P_{\nu}: \nu\in\mathbb{N}\}\subseteq\mathcal{Y}_{n-k+1}$ (or any family of isometries $\{M_{\nu}: \nu\in\mathbb{N}\}\subseteq\mathcal{X}_{n-k+1}$) we have \begin{equation}\label{eq2.1} \Lambda_{k}(A)=\bigcap_{\nu\in\mathbb{N}}F(P_{\nu}AP_{\nu})=\bigcap_{\nu\in\mathbb{N}}F(M_{\nu}^{*}AM_{\nu}). \end{equation} \end{theorem} \begin{proof} By Theorem \ref{th1}, we have \[ [\Lambda_{k}(A)]^{c}=\mathbb{C}\setminus\Lambda_{k}(A)=\bigcup_{P\in\mathcal{Y}_{n-k+1}}[F(PAP)^{c}], \] whereupon the family $\{F(PAP)^{c}: P\in\mathcal{Y}_{n-k+1}\}$ is an open cover of $[\Lambda_{k}(A)]^{c}$. Moreover, $[\Lambda_{k}(A)]^{c}$ is separable, as an open subset of the sepa\-rable space $\mathbb{C}$ and then $[\Lambda_{k}(A)]^{c}$ has a countable base \cite{top}, which obviously depends on the matrix $A$. This fact guarantees that any open cover of $[\Lambda_{k}(A)]^{c}$ admits a countable subcover, leading to the relation \[ [\Lambda_{k}(A)]^{c}=\bigcup_{\nu\in\mathbb{N}}[F(P_{\nu}AP_{\nu})^{c}], \] i.e. leading to the first equality in \eqref{eq2.1}. Taking into consideration that there exists a countable dense subset $\mathcal{J}\subseteq\mathcal{Y}_{n-k+1}$ with respect to the operator norm $\|\cdot\|$ and $P_{\nu}\in\mathcal{Y}_{n-k+1}$, for $\nu\in\mathbb{N}$, clearly, $\bigcap_{\nu\in\mathbb{N}}F(P_{\nu}AP_{\nu})=\bigcap_{\nu\in\mathbb{N},P_{\nu}\in \mathcal{J}}F(P_{\nu}AP_{\nu})$. That is in \eqref{eq2.1}, the family of orthogonal projections $\{P_{\nu}: \nu\in\mathbb{N}\}$ can be chosen independently of $A$. Moreover, due to $P_{\nu}=M_{\nu}M^{*}_{\nu}$, with $M_{\nu}\in\mathcal{X}_{n-k+1}$, we derive the second equality in \eqref{eq2.1}. \end{proof} For a construction of a countable family of isometries $\{M_{\nu}: \nu\in\mathbb{N}\}\subseteq\mathcal{X}_{n-k+1}$, see also in the Appendix. \\\\ Furthermore, using the dual ``max-min'' expression of the $k$-th eigenvalue, \[ \lambda_{k}(H(e^{\mathrm{i}\theta}A))=\max_{\dim \mathcal{G}=k}{\min_{\substack{x\in\mathcal{G}\\ \|x\|=1}}{x^{*}H(e^{\mathrm{i}\theta}A)x}}= \max_{N}{\lambda_{\min}(H(e^{\mathrm{i}\theta}N^{*}AN))}, \] where $N\in\mathcal{X}_{k}$, we have \begin{eqnarray}\label{t} \nonumber\Lambda_{k}(A) & = & \bigcap_{\theta}{e^{-\mathrm{i}\theta}\{z\in\mathbb{C} : \mathrm{Re}z \leq \max_{N}{\lambda_{k}(H(e^{\mathrm{i}\theta}N^{*}AN))}\}}\\ \nonumber & = & \bigcup_{N}{\bigcap_{\theta}{e^{-\mathrm{i}\theta}\{z\in\mathbb{C} : \mathrm{Re}z \leq \lambda_{k}(H(e^{\mathrm{i}\theta}N^{*}AN))\}}}\\ & = & \bigcup_{N\in\mathcal{X}_{k}}{\Lambda_{k}(N^{*}AN)}, \end{eqnarray} and due to the convexity of $\Lambda_{k}(A)$, we establish \begin{equation}\label{co} \Lambda_{k}(A)=\mathrm{co}\bigcup_{N\in\mathcal{X}_{k}}{\Lambda_{k}(N^{*}AN)}, \end{equation} where $\mathrm{co}(\cdot)$ denotes the convex hull of a set. Apparently, $\Lambda_{k}(N^{*}AN)\neq\emptyset$ if and only if $N^{*}AN=\lambda I_{k}$ \cite{Poon-Li-Sze} and then \eqref{co} is reduced to $\bigcup_{N}{\Lambda_{k}(N^{*}AN)}=\bigcup_{N}{\{\lambda: N^{*}AN=\lambda I_{k}\}}=\Lambda_{k}(A)$, where $N$ runs all $n\times k$ isometries. In spite of Theorem \ref{th2}, $\Lambda_{k}(A)$ cannot be described as a countable union in \eqref{t}, because if \[ \Lambda_{k}(A)=\bigcup_{\nu\in\mathbb{N}}\{\Lambda_{k}(N^{*}_{\nu}AN_{\nu}): N_{\nu}\in\mathcal{X}_{k}\}= \bigcup_{\nu\in\mathbb{N}}\{\lambda_{\nu}:N^{*}_{\nu}AN_{\nu}=\lambda_{\nu}I_{k},\,N_{\nu}\in\mathcal{X}_{k}\}, \] then $\Lambda_{k}(A)$ should be a countable set, which is not true. \section{Properties of $r_{k}(A)$ and $\widetilde{r}_{k}(A)$} In this section, we characterize the $k$-rank numerical radius $r_{k}(A)$ and the inner $k$-rank numerical radius $\widetilde{r}_{k}(A)$. Motivated by Theorem \ref{th2}, we present the next two results. \begin{theorem}\label{th3} Let $A\in\mathcal{M}_{n}$ and $\mathcal{J}_{\nu}(A)=\bigcap_{p=1}^{\nu}F(M_{p}^{*}AM_{p})$, where $M_{p}\in\mathcal{X}_{n-k+1}$. Then \begin{equation*} r_{k}(A)=\lim_{\nu\to\infty}\sup\{|z| : z\in\mathcal{J}_{\nu}(A)\} =\inf_{\nu\in\mathbb{N}}\sup\{|z| : z\in\mathcal{J}_{\nu}(A)\}. \end{equation*} \end{theorem} \begin{proof} By Theorem \ref{th2}, we have \begin{equation}\label{rel7} \Lambda_{k}(A)=\bigcap_{\nu=1}^{\infty}\mathcal{J}_{\nu}(A)\subseteq\mathcal{J}_{\nu}(A)\subseteq F(A) \subseteq\mathcal{D}(0,\|A\|_{2}), \end{equation} for all $\nu\in\mathbb{N}$, where the sequence $\{\mathcal{J}_{\nu}(A)\}_{\nu\in\mathbb{N}}$ is nonincreasing and $\mathcal{D}(0,\|A\|_{2})$ is the circular disc centered at the origin with radius the spectral norm $\|A\|_{2}$ of $A\in\mathcal{M}_{n}$. Clearly, \[ r_{k}(A)=\max_{z\in\bigcap_{\nu=1}^{\infty}\mathcal{J}_{\nu}(A)}|z|\leq \sup_{z\in\mathcal{J}_{\nu}(A)}|z|\leq r(A)\leq\|A\|_{2}, \] then the nonincreasing and bounded sequence $q_{\nu}=\sup\{|z|: z\in\mathcal{J}_{\nu}(A)\}$ converges. Therefore \[ r_{k}(A)\leq\lim_{\nu\to\infty}q_{\nu}=q_{0}. \] We shall prove that the above inequality is actually an equality. Assume that $r_{k}(A)0$, where $r_{k}(A)+\varepsilont_{0}$, then $t_{\nu}\leq t_{0}<\widetilde{r}_{k}(A)-\varepsilon$, for all $\nu\in\mathbb{N}$ and $\varepsilon>0$. Considering the sequence $\{\widetilde{\zeta}_{\nu}\}\subseteq\mathcal{J}_{\nu}(A)$ such that $|\widetilde{\zeta}_{\nu}|\leq t_{0}$, let its subsequence $\{\widetilde{\zeta}_{s_{\nu}}\}$ converging to $\widetilde{\zeta}_{0}$, with $|\widetilde{\zeta}_{0}|\leq t_{0}$. Since $\{\mathcal{J}_{\nu}(A)\}$ is nonincreasing, $\widetilde{\zeta}_{s_{\nu}}$ eventually belong to $\mathcal{J}_{\nu}(A)$,\, $\forall\,\, \nu\in\mathbb{N}$, establishing $\{\widetilde{\zeta}_{s_{\nu}}\}\subseteq\bigcap_{\nu\in\mathbb{N}}\mathcal{J}_{\nu}(A)=\Lambda_{k}(A)$. Hence, we conclude $\widetilde{\zeta}_{0}\in\bigcap_{\nu=1}^{\infty}\mathcal{J}_{\nu}(A)=\Lambda_{k}(A)$, i.e. $t_{0}\geq|\widetilde{\zeta}_{0}|\geq\widetilde{r}_{k}(A)$, absurd. The second equality is trivial. \end{proof} The next proposition asserts a lower and an upper bound for $r_{k}(A)$ and $\widetilde{r}_{k}(A)$, respectively. \begin{proposition} Let $A\in\mathcal{M}_{n}$ and $M_{p}\in\mathcal{X}_{n-k+1}$, $p\in\mathbb{N}$, then \[ r_{k}(A)\leq\inf_{p\in\mathbb{N}}r(M_{p}^{*}AM_{p}). \] If $0\notin\Lambda_{k}(A)$, then $$\widetilde{r}_{k}(A)\geq\inf_{p\in\mathbb{N}}\widetilde{r}(M^{*}_{p}AM_{p}).$$ \end{proposition} \begin{proof} By Theorem \ref{th2}, we obtain $\partial\Lambda_{k}(A)\subseteq\Lambda_{k}(A)\subseteq F(M_{p}^{*}AM_{p})$ for all $p\in\mathbb{N}$. Then \[ r_{k}(A)=\max\{|z|: z\in\Lambda_{k}(A)\}\leq\max\{|z|: z\in F(M_{p}^{*}AM_{p})\}=r(M_{p}^{*}AM_{p}). \] Denoting by $c(M_{p}^{*}AM_{p})=\min\{|z|: z\in F(M_{p}^{*}AM_{p})\}$ for all $p\in\mathbb{N}$, we have \[ \widetilde{r}_{k}(A)\geq\min\{|z|: z\in\Lambda_{k}(A)\}\geq c(M_{p}^{*}AM_{p}). \] Since $0\leq c(M_{p}^{*}AM_{p})\leq\widetilde{r}(M_{p}^{*}AM_{p})\leq r(M_{p}^{*}AM_{p})\leq\|A\|_{2}$ for any $p\in\mathbb{N}$, immediately, we obtain \begin{equation*} r_{k}(A)\leq\inf_{p\in\mathbb{N}}r(M_{p}^{*}AM_{p})\,\,\, \textrm{and}\,\,\,\,\widetilde{r}_{k}(A)\geq\sup_{p\in\mathbb{N}}c(M_{p}^{*}AM_{p}). \end{equation*} If $0\notin\Lambda_{k}(A)$, then by Theorem \ref{th2}, $0\notin F(M^{*}_{l}AM_{l})$ for some $l\in\mathbb{N}$, $M_{l}\in\mathcal{X}_{n-k+1}$ and $c(M^{*}_{l}AM_{l})=\widetilde{r}(M^{*}_{l}AM_{l})$. Hence \[ \widetilde{r}_{k}(A)\geq\sup_{p\in\mathbb{N}}c(M^{*}_{p}AM_{p})\geq\widetilde{r}(M^{*}_{l}AM_{l})\geq\inf_{p\in\mathbb{N}} \widetilde{r}(M^{*}_{p}AM_{p}). \] \end{proof} The numerical radius function $r(\cdot):\mathcal{M}_{n}\to\mathbb{R}_{+}$ is not a matrix norm, never\-theless, it satisfies the power inequality $r(A^{m})\leq[r(A)]^{m}$, for all po\-sitive integers $m$, which is utilized for stability issues of several iterative methods \cite{Ando,H.J.T}. On the other hand, the $k$-rank numerical radius fails to satisfy the power inequality, as the next counterexample reveals. \begin{example} Let the matrix $A=\left[\begin{smallmatrix} 1.8 & 2 & 3 & 4 \\ 0 & 0.8+\mathrm{i} & 0 & \mathrm{i} \\ -2 & 1 & -1.2 & 1 \\ 0 & 0 & 1 & 0.8 \\ \end{smallmatrix}\right]$. Using Theorems \ref{th1} and \ref{th2}, the set $\Lambda_{2}(A)$ is illustrated in the left part of Figure \ref{fig1} by the uncovered area inside the figure. Clearly, it is included in the unit circular disc, which indicates that $r_{2}(A)<1$. On the other hand, the set $\Lambda_{2}(A^{2})$, illustrated in the right part of Figure \ref{fig1} with the same manner, is not bounded by the unit circle and thus $r_{2}(A^{2})>1$. Obviously, $[r_{2}(A)]^{2}<10$, such that \begin{equation*} \mathcal{B}(z_{0},\varepsilon)\subset\bigcap_{\nu\in\mathbb{N}}F(M_{\nu}^{*}AM_{\nu})\,\,\,\textrm{and}\,\,\, \mathcal{B}(z_{0},\varepsilon)\cap\Lambda_{k}(A)=\emptyset. \end{equation*} Then, the set $[\Lambda_{k}(A)]^{c}=\mathbb{C}\setminus\Lambda_{k}(A)$ is separable, as an open subset of the sepa\-rable space $\mathbb{C}$ and let $\mathcal{Z}$ be a countable dense subset of $[\Lambda_{k}(A)]^{c}$ \cite{top}. Therefore, there exists a sequence $\{z_{p}:p\in\mathbb{N}\}$ in $\mathcal{Z}$ such that $\lim_{p\to\infty}z_{p}=z_{0}$ and $z_{p}\in\mathcal{B}(z_{0},\varepsilon)$. Moreover, $z_{p}\in[\Lambda_{k}(A)]^{c}$ and by \eqref{eq0}, it follows that for any $p$ correspond indices $j_{p}\in\mathbb{N}$ such that $z_{p}\notin F(M_{j_{p}}^{*}AM_{j_{p}})$. Thus $z_{p}\notin\bigcap_{p\in\mathbb{N}}F(M_{j_{p}}^{*}AM_{j_{p}})$, which is absurd, since $z_{p}\in\mathcal{B}(z_{0},\varepsilon)\subset\bigcap_{\nu\in\mathbb{N}}F(M_{\nu}^{*}AM_{\nu})$. Hence $z_{0}\in\Lambda_{k}(A)$, verifying our claim and we obtain \begin{equation}\label{eq8} \overline{\mathrm{int}\bigcap_{\nu\in\mathbb{N}}F(M_{\nu}^{*}AM_{\nu})}\subseteq\overline{\Lambda_{k}(A)}=\Lambda_{k}(A). \end{equation} By \eqref{eq4}, \eqref{eq5} and \eqref{eq8}, the required equality is asserted. Consider now that $\Lambda_{k}(A)$ has no interior points, namely, it is a line segment or a singleton. Then there is a suitable affine subspace $\mathcal{V}$ of $\mathbb{C}$ such that $\Lambda_{k}(A)\subseteq\mathcal{V}$ and with respect to the subspace topology, we have $\mathrm{int}\Lambda_{k}(A)\neq\emptyset$ and $\mathcal{V}\setminus\Lambda_{k}(A)$ be separable. Following the same arguments as above, let $\widetilde{\mathcal{Z}}$ be a countable dense subset of $\mathcal{V}\setminus\Lambda_{k}(A)$. Hence, there is a sequence $\{\widetilde{z}_{q}: q\in\mathbb{N}\}$ in $\widetilde{\mathcal{Z}}$ converging to $z_{0}$ and $\widetilde{z}_{q}\in\mathcal{B}(z_{0},\varepsilon)\subset \bigcap_{\nu\in\mathbb{N}}F(M_{\nu}^{*}AM_{\nu})$. On the other hand, by \eqref{eq0}, we have $\widetilde{z}_{q}\notin \bigcap_{q\in\mathbb{N}}F(M_{i_{q}}^{*}AM_{i_{q}})$ for some indices $i_{q}\in\mathbb{N}$. Clearly, we are led to a contradiction and we deduce $\bigcap_{\nu\in\mathbb{N}}F(M_{\nu}^{*}AM_{\nu})\subseteq\Lambda_{k}(A)$. Hence, with \eqref{eq1}, we conclude \[ \Lambda_{k}(A)=\bigcap_{\nu\in\mathbb{N}}F(M_{\nu}^{*}AM_{\nu}). \] \end{proof} \bigskip \textbf{Acknowledgement.} The authors would like to express their thanks to the reviewer for his comment on Theorem \ref{th2}. \bibliographystyle{amsplain} \begin{thebibliography}{99} \bibitem{Adam} M. Adam, J. Maroulas and P. Psarrakos, \textit{On the numerical range of rational matrix functions}, Linear and Multilinear Algebra \textbf{50} (2002), no. 1, 75--89. \bibitem{Ando} T. Ando, \textit{Structure of operators with numerical radius one}, Acta Scientia Mathematica (Szeged) \textbf{34} (1973, 11--15. \bibitem{Aretaki} Aik. Aretaki, \textit{Higher rank numerical ranges of nonnegative matrices and matrix polynomials}, Ph.D. Thesis, National Technical University of Athens, Greece, 2011. \bibitem{Aret} Aik. Aretaki and J. Maroulas, \textit{The higher rank numerical range of matrix polynomials}, 10th workshop on Numerical Ranges and Numerical Radii, Krakow, Poland, 2010, preprint http://arxiv.org/1104.1341v1 [math.RA], 2011, submitted for publication. \bibitem{H.J.T} R.A. Horn and C.R. Johnson, \textit{Topics in Matrix Analysis}, Cambridge University Press, Cambridge, 1991. \bibitem{Poon-Li-Sze} C.K. Li, Y.T. Poon and N.S. Sze, \textit{Higher rank numerical ranges and low rank pertubations of quantum channels}, J. Mathematical Analysis and Applications, \textbf{348} (2008), 843--855. \bibitem{Li-Sze} C.K. Li and N.S. Sze, \textit{Canonical forms, higher rank numerical ranges, totally isotropic subspaces, and matrix equations}, Proceedings of the American Mathematical Society, \textbf{136} (2008), 3013--3023. \bibitem{top} J.R. Munkres, \textit{Topology}, 2nd. Edition, Prentice Hall, 1975. \bibitem{Hugo} H.J. Woerdeman, \textit{The higher rank numerical range is convex}, Linear and Multilinear Algebra, \textbf{56} (2007), no. 1, 65--67. \end{thebibliography} \end{document} %------------------------------------------------------------------------------ % End of journal.tex %------------------------------------------------------------------------------ .