\documentclass[12pt, reqno]{amsart} \usepackage{amsmath, amsthm, amscd, amsfonts, amssymb, graphicx, color} \usepackage[bookmarksnumbered, colorlinks, plainpages]{hyperref} \textheight 22.5truecm \textwidth 14.5truecm \setlength{\oddsidemargin}{0.35in}\setlength{\evensidemargin}{0.35in} \setlength{\topmargin}{-.5cm} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{exercise}[theorem]{Exercise} \newtheorem{conclusion}[theorem]{Conclusion} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{criterion}[theorem]{Criterion} \newtheorem{summary}[theorem]{Summary} \newtheorem{axiom}[theorem]{Axiom} \newtheorem{problem}[theorem]{Problem} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \numberwithin{equation}{section} \newtheorem*{thA}{Theorem A} \newtheorem*{thB}{Theorem B} \newtheorem*{lmC}{Lemma C} \input{mathrsfs.sty} \begin{document} \setcounter{page}{67} \noindent\parbox{2.95cm}{\includegraphics*[keepaspectratio=true,scale=0.125]{AFA.jpg}} \noindent\parbox{4.85in}{\hspace{0.1mm}\\[1.5cm]\noindent \qquad Ann. Funct. Anal. 3 (2012), no. 1, 67--85\\ {\footnotesize \qquad \textsc{\textbf{$\mathscr{A}$}nnals of \textbf{$\mathscr{F}$}unctional \textbf{$\mathscr{A}$}nalysis}\\ \qquad ISSN: 2008-8752 (electronic)\\ \qquad URL: \textcolor[rgb]{0.00,0.00,0.99}{www.emis.de/journals/AFA/} }\\[.5in]} \title[Extension of the refined Jensen's operator inequality]{Extension of the refined Jensen's operator inequality with condition on spectra} \author[J. Mi\'{c}i\'{c}, J. Pe\v {c}ari\'{c}, J. Peri\'{c}]{Jadranka Mi\'{c}i\'{c}$^1$$^{*}$, Josip Pe\v {c}ari\'{c}$^2$ and Jurica Peri\'{c}$^3$} \address{$^{1}$ Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lu\v ci\' ca 5, 10000 Zagreb, Croatia.} \email{\textcolor[rgb]{0.00,0.00,0.84}{jmicic@fsb.hr}} \address{$^{2}$ Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovi\'{c}a 30, 10000 Zagreb, Croatia.} \email{\textcolor[rgb]{0.00,0.00,0.84}{pecaric@hazu.hr}} \address{$^{3}$ Faculty of Science, Department of Mathematics, University of Split, Teslina 12, 21000 Split, Croatia.} \email{\textcolor[rgb]{0.00,0.00,0.84}{jperic@pmfst.hr}} \dedicatory{{\rm Communicated by M. S. Moslehian}} \subjclass[2010]{Primary 47A63; Secondary 47B15.} \keywords{Jensen's operator inequality, self-adjoint operator, positive linear mapping, convex function, quasi-arithmetic mean.} \date{Received: 6 January 2012; Accepted: 13 January 2012. \newline \indent $^{*}$ Corresponding author} \begin{abstract} We give an extension of the refined Jensen's operator inequality for $n-$tuples of self-adjoint operators, unital $n-$tuples of positive linear mappings and real valued continuous convex functions with conditions on the spectra of the operators. We also study the order among quasi-arithmetic means under similar conditions. \end{abstract} \maketitle \section{Introduction} We recall some notations and definitions. Let $\mathcal{B}(H)$ be the $C^*$-algebra of all bounded linear operators on a Hilbert space $ H$ and $1_H$ stands for the identity operator. We define bounds of a self-adjoint operator $A\in \mathcal{B}(H)$ by \begin{equation*} \label{eq-mM} m_A = \inf _{\| x\|=1} \langle Ax,x \rangle \quad \mbox{and} \quad M_A = \sup _{\| x\|=1} \langle Ax,x \rangle \end{equation*} for $x \in H$. If ${\mathsf{Sp}}(A)$ denotes the spectrum of $A$, then ${\mathsf{Sp}}(A)$ is real and ${\mathsf{Sp}}(A) \subseteq [m_A,M_A]$. For an operator $A\in \mathcal{B}(H)$ we define operators $|A|$, $A^+$, $A^-$ by $$|A|=(A^*A)^{1/2}, \qquad A^+=(|A|+A)/2, \qquad A^-=(|A|-A)/2.$$ Obviously, if $A$ is self-adjoint, then $|A|=(A^{2})^{1/2}$ and $A^{+}, A^{-}\geq 0$ (called positive and negative parts of $A=A^{+}-A^{-}$). \medskip B. Mond and J. Pe\v cari\' c in \cite{MP1} proved Jensen's operator inequality \begin{equation}\label{OP-MP} f\left(\sum_{i=1}^{n}w_{i}\Phi_{i}(A_i)\right) \leq \sum_{i=1}^{n}w_{i} \Phi_i \left( f(A_i) \right),\end{equation} for operator convex functions $ f $ defined on an interval $ I, $ where $\Phi_i :\mathcal{B}(H)\to \mathcal{B}(K)$, $i=1,\ldots,n$, are unital positive linear mappings, $A_1,\dots,A_n $ are self-adjoint operators with the spectra in $I$ and $w_1,\dots,w_n $ are non-negative real numbers with $\sum_{i=1}^{n}w_i=1$. F. Hansen, J. Pe\v{c}ari\'{c} and I. Peri\'{c} gave in \cite{HPP2} a generalization of \eqref{OP-MP} for a unital field of positive linear mappings. The following discrete version of their inequality holds \begin{equation}\label{OP-HPP} f\left(\sum_{i=1}^{n}\Phi_{i}(A_i)\right) \leq \sum_{i=1}^{n} \Phi_i \left( f(A_i) \right),\end{equation} for operator convex functions $ f $ defined on an interval $ I, $ where $\Phi_i :\mathcal{B}(H)\to \mathcal{B}(K)$, $i=1,\ldots,n$, is a unital field of positive linear mappings (i.e.\ $\sum_{i=1}^{n} \Phi_i(1_H)=1_K$), $A_1,\dots,A_n $ are self-adjoint operators with the spectra in $I$. Recently, J. Mi\'{c}i\'{c}, Z. Pavi\'{c} and J. Pe\v{c}ari\'{c} proved in \cite[Theorem 1]{MPP} that \eqref{OP-HPP} stands without operator convexity of $f:I \to {\mathbb{R}}$ if a condition on spectra \begin{equation*}\label{tA-condition}(m_A,M_A) \cap [m_i,M_i]= {\O} \quad \text{for}~ i=1,\ldots,n \end{equation*} holds, where $m_i$ and $M_i$, $m_i \leq M_i$ are bounds of $A_i$, $i=1,\ldots,n$; and $m_A$ and $M_A$, $m_A \leq M_A$, are bounds of $A=\sum_{i=1}^{n}\Phi_{i}(A_i)$ (provided that the interval $I$ contains all $m_i,M_i$). Next, they considered in \cite[Theorem 2.1]{MPP3} the case when $(m_A,M_A) \cap [m_i,M_i]= {\O} $ is valid for several $i\in \{1,\ldots,n\}$, but not for all $i=1,\ldots,n$ and obtain an extension of \eqref{OP-HPP} as follows. \begin{thA}\label{thA} Let $(A_1,\ldots,A_n)$ be an $n-$tuple of self-adjoint operators $A_i \in B(H)$ with the bounds $m_i$ and $M_i$, $m_i \leq M_i$, $i=1,\ldots,n$. Let $(\Phi_1,\ldots,\Phi_n)$ be an $n-$tuple of po\-si\-tive linear mappings $\Phi_i:B(H) \rightarrow B(K)$, such that $\sum_{i=1}^{n_1}\Phi_i (1_H)=\alpha\, 1_K$, $\sum_{i=n_1+1}^{n}\Phi_i (1_H)=\beta\, 1_K$, where $1\leq n_10$ and $\alpha+\beta=1$. Let $m= \min \{m_1,\ldots,m_{n_1} \}$ and $M= \max \{M_1,\ldots,M_{n_1} \}$. If $$(m,M) \cap [m_i,M_i]= {\O} \qquad \text{for} \quad i=n_1+1,\ldots,n,$$ and one of two equalities $$\frac{1}{\alpha}\sum_{i=1}^{n_1}\Phi_i(A_i)=\sum_{i=1}^{n}\Phi_i(A_i)= \frac{1}{\beta}\sum_{i=n_1+1}^{n}\Phi_i(A_i)$$ is valid, then \begin{equation}\label{jmA-eq} \frac{1}{\alpha}\sum_{i=1}^{n_1}\Phi_i(f(A_i))\leq \sum_{i=1}^{n}\Phi_i(f(A_i))\leq\frac{1}{\beta}\sum_{i=n_1+1}^{n}\Phi_i(f(A_i)), \end{equation} holds for every continuous convex function $f:I \rightarrow {\mathbb{R}}$ provided that the interval $I$ contains all $m_i,M_i$, $i=1,\ldots,n,$. If $f:I \rightarrow {\mathbb{R}}$ is concave, then the reverse inequality is valid in \eqref{jmA-eq}. \end{thA} Very recently, J. Mi\'{c}i\'{c}, J. Pe\v{c}ari\'{c} and J. Peri\'{c} gave in \cite[Theorem 3]{MPPeric1} the following refinement of \eqref{OP-HPP} with condition on spectra, i.e.\ a refinement of \cite[Theorem 3]{MPP} (see also \cite[Corollary 5]{MPP}). \begin{thB}\label{thB} Let $(A_1,\ldots,A_n)$ be an $n-$tuple of self-adjoint operators $A_i \in B(H)$ with the bounds $m_i$ and $M_i$, $m_i \leq M_i$, $i=1,\ldots,n$. Let $(\Phi_1,\ldots,\Phi_n)$ be an $n-$tuple of po\-si\-tive linear mappings $\Phi_i:B(H) \rightarrow B(K)$, $i=1,\ldots,n$, such that $\sum_{i=1}^{n}\Phi_i (1_H)=1_K$. Let $$(m_A,M_A) \cap [m_i,M_i]= {\O} \quad \text{for}~ i=1,\ldots,n,\qquad \text{and} \qquad m0$ and $\alpha+\beta=1$. Let \\$m_L= \min \{m_1,\ldots,m_{n_1} \}$, $M_R= \max \{M_1,\ldots,M_{n_1}\}$ and $$ \begin{array}{rcl} m&=&\left\{ \begin{array}{l} m_L, \qquad\text{\rm if} \; \left\{ M_i \colon M_i \leq m_L, i\in \{n_1+1,\ldots,n\} \right\}={\O}, \\ \max\left\{ M_i \colon M_i \leq m_L, i\in \{n_1+1,\ldots,n\} \right\}, \quad \text{\rm otherwise}, \end{array} \right.\\ M&=& \left\{ \begin{array}{l} M_R, \qquad\text{\rm if} \; \left\{m_i \colon m_i \geq M_R, i\in \{n_1+1,\ldots,n\} \right\}={\O}, \\ \min\left\{m_i \colon m_i \geq M_R, i\in \{n_1+1,\ldots,n\} \right\}, \quad \text{\rm otherwise}.\end{array} \right. \end{array} $$ If $$ (m_L,M_R) \cap [m_i,M_i]= {\O} \quad \text{for} \quad i=n_1+1,\ldots,n, \quad \quad m0$ and $\alpha+\beta=1$. Let one of two equalities \begin{equation}\label{jmt2-uvjet} \mathcal{M}_{\varphi}(\alpha, \mathbf{A},\mathbf{\Phi},1,n_1)= \mathcal{M}_{\varphi}(1,\mathbf{A},\mathbf{\Phi},1,n)= \mathcal{M}_{\varphi}(\beta, \mathbf{A},\mathbf{\Phi},n_1+1,n) \end{equation} be valid and let $$ (m_L,M_R) \cap [m_i,M_i]= {\O} \quad \text{for} \quad i=n_1+1,\ldots,n, \quad \quad m0$ and $\alpha+\beta=1$. Let $$ (m_L,M_R) \cap [m_i,M_i]= {\O} \quad \text{for} \quad i=n_1+1,\ldots,n, \quad \quad m