%------------------------------------------------------------------------------ % Here please write the date of submission of paper or its revisions: %------------------------------------------------------------------------------ % \documentclass[12pt, reqno]{amsart} \usepackage{amsmath, amsthm, amscd, amsfonts, amssymb, graphicx, color} \usepackage[bookmarksnumbered, colorlinks, plainpages]{hyperref} \textheight 22.5truecm \textwidth 14.5truecm \setlength{\oddsidemargin}{0.35in}\setlength{\evensidemargin}{0.35in} \setlength{\topmargin}{-.5cm} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{exercise}[theorem]{Exercise} \newtheorem{conclusion}[theorem]{Conclusion} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{criterion}[theorem]{Criterion} \newtheorem{summary}[theorem]{Summary} \newtheorem{axiom}[theorem]{Axiom} \newtheorem{problem}[theorem]{Problem} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \numberwithin{equation}{section} \input{mathrsfs.sty} \begin{document} \setcounter{page}{142} \noindent\parbox{2.95cm}{\includegraphics*[keepaspectratio=true,scale=0.125]{AFA.jpg}} \noindent\parbox{4.85in}{\hspace{0.1mm}\\[1.5cm]\noindent \qquad Ann. Funct. Anal. 3 (2012), no. 1, 142--150\\ {\footnotesize \qquad \textsc{\textbf{$\mathscr{A}$}nnals of \textbf{$\mathscr{F}$}unctional \textbf{$\mathscr{A}$}nalysis}\\ \qquad ISSN: 2008-8752 (electronic)\\ \qquad URL: \textcolor[rgb]{0.00,0.00,0.99}{www.emis.de/journals/AFA/} }\\[.5in]} \title[Half-Discrete Mulholland-Type Inequality with Parameters]{ A New Half-Discrete Mulholland-Type Inequality with Parameters} \author[B. Yang]{Bicheng Yang} \address{Department of Mathematics, Guangdong University of \and Education, Guangzhou, Guangdong 510303, P. R. China.} \email{\textcolor[rgb]{0.00,0.00,0.84}{ bcyang@gdei.edu.cn}} \dedicatory{{\rm Communicated by J. Soria}} \subjclass[2010]{Primary 26D15; Secondary 47A07.} \keywords{Mulholland-type inequality, weight function, equivalent form.} \date{Received: 6 December 2011; Accepted: 3 March 2012.} \begin{abstract} By means of weight functions and Hadamard's inequality, a new half-discrete Mulholland-type inequality with a best constant factor is given. A best extension with parameters, some equivalent forms, the operator expressions as well as some particular cases are also considered. \end{abstract} \maketitle \section{Introduction} \noindent Assuming that $f,g\in L^{2}(R_{+}),||f||$ $=\{\int_{0}^{\infty }f^{2}(x)dx\}^{\frac{1}{2}}$ $>0,||g||>0,$ we have the following Hilbert's integral inequality (cf. \cite{HLP}): \begin{equation} \int_{0}^{\infty }\int_{0}^{\infty }\frac{f(x)g(y)}{x+y}dxdy<\pi ||f||||g||, \label{1} \end{equation}% where the constant factor $\pi $ is best possible. If $a=\{a_{n}\}_{n=1}^{% \infty },b=\{b_{n}\}_{n=1}^{\infty }\in l^{2},||a||=\{\sum_{n=1}^{\infty }a_{n}^{2}\}^{\frac{1}{2}}>0,||b||>0,$ then we have the following analogous discrete Hilbert's inequality \begin{equation} \sum_{m=1}^{\infty }\sum_{n=1}^{\infty }\frac{a_{m}b_{n}}{m+n}<\pi ||a||||b||, \label{2} \end{equation}% with the same best constant factor $\pi $. Inequalities (\ref{1}) and (\ref% {2}) are important in analysis and its applications (cf. \cite{MPF, Y1, Y2}). On the other-hand, we have the following Mulholland's inequality with the same best constant factor (cf. \cite{HLP, Y7}):% \begin{equation} \sum_{m=2}^{\infty }\sum_{n=2}^{\infty }\frac{a_{m}b_{n}}{\ln mn}<\pi \left\{ \sum_{m=2}^{\infty }ma_{m}^{2}\sum_{n=2}^{\infty }nb_{n}^{2}\right\} ^{\frac{1}{2}}. \label{3} \end{equation} In 1998, by introducing an independent parameter $\lambda \in (0,1]$, Yang \cite{Y3} gave an extension of (\ref{1}). Refinement the results from \cite{Y3}, Yang \cite{Y4} gave some best extensions of (\ref% {1}) and (\ref{2}): If $p>1,\frac{1}{p}+\frac{1}{q}=1,\lambda _{1}+\lambda _{2}=\lambda ,k_{\lambda }(x,y)$ is a non-negative homogeneous function of degree $-\lambda $ satisfying $k(\lambda _{1})=\int_{0}^{\infty }k_{\lambda }(t,1)t^{\lambda _{1}-1}dt$ \\$\in R_{+},$ $\phi (x)=x^{p(1-\lambda _{1})-1}$, $% \psi (x)=x^{q(1-\lambda _{2})-1},$ $$f(\geq 0)\in L_{p,\phi }(R_{+}) =\{f|||f||_{p,\phi }:=\{\int_{0}^{\infty }\phi (x)|f(x)|^{p}dx\}^{\frac{1}{p}% }<\infty \},$$ $g(\geq 0)\in L_{q,\psi }(R_{+}),$ and $||f||_{p,\phi },$ $% ||g||_{q,\psi }>0,$ then \begin{equation} \int_{0}^{\infty }\int_{0}^{\infty }k_{\lambda }(x,y)f(x)g(y)dxdy0(y>0),$ then for $a_{m,}b_{n}\geq 0,$ $a=\{a_{m}\}_{m=1}^{\infty }\in l_{p,\phi }=\{a|||a||_{p,\phi }:=\{\sum_{n=1}^{\infty }\phi (n)|a_{n}|^{p}\}^{\frac{1}{% p}}<\infty \},$ and $b=\{b_{n}\}_{n=1}^{\infty }\in l_{q,\psi },$ $% ||a||_{p,\phi },||b||_{q,\psi }>0,$ we have \begin{equation} \sum_{m=1}^{\infty }\sum_{n=1}^{\infty }k_{\lambda }(m,n)a_{m}b_{n}1+\alpha , \label{9} \end{eqnarray}% then we have \begin{equation} \varpi (x)<\omega (n)=B(\frac{\lambda }{2},\frac{\lambda }{2}). \label{10} \end{equation}\end{lemma} \begin{proof} \emph{ }Substituting $t=\ln (x-\alpha )\ln (n-\beta )$ in (\ref{8}), and by simple calculation, we have% \begin{equation*} \omega (n)=\int_{0}^{\infty }\frac{1}{(1+t)^{\lambda }}t^{\frac{\lambda }{2}% -1}dt=B(\frac{\lambda }{2},\frac{\lambda }{2}). \end{equation*}% For fixed $x>1+\alpha $, in view of the conditions, it is easy to see that% \begin{equation*} h(x,y):=\frac{\ln ^{\frac{\lambda }{2}-1}(y-\beta )}{(y-\beta )[1+\ln (x-\alpha )\ln (y-\beta )]^{\lambda }} \end{equation*}% is decreasing and strictly convex with $h_{y}^{\prime }(x,y)<0$ and $% h_{y^{2}}^{\prime \prime }(x,y)>0,$ for $y\in (\frac{3}{2},\infty ).$ Hence by (\ref{9}) and Hadamard's inequality (cf. \cite{K1}), we find% \begin{equation*} \varpi (x)<\ln ^{\frac{\lambda }{2}}(x-\alpha )\int_{\frac{3}{2}}^{\infty }% \frac{\ln ^{\frac{\lambda }{2}-1}(y-\beta )dy}{(y-\beta )[1+\ln (x-\alpha )\ln (y-\beta )]^{\lambda }} \end{equation*}% \begin{equation*} \overset{t=\ln (x-\alpha )\ln (y-\beta )}{=}\int_{\ln (x-\alpha )\ln (\frac{3% }{2}-\beta )}^{\infty }\frac{t^{\frac{\lambda }{2}-1}}{(1+t)^{\lambda }}% dt\leq B(\frac{\lambda }{2},\frac{\lambda }{2}), \notag \end{equation*}% and (\ref{10}) follows. \end{proof} \begin{lemma} \textbf{} Let the assumptions of Lemma 1 be fulfilled and additionally, let $p>1,\frac{1}{p}+\frac{1}{q}=1,a_{n}\geq 0,n\in \mathbf{% N\backslash \{}1\mathbf{\}},f(x)$ is a non-negative measurable function in $% (1+\alpha ,\infty ).$ Then we have the following inequalities:% \begin{equation*} J:=\left\{ \sum_{n=2}^{\infty }\frac{\ln ^{\frac{p\lambda }{2}-1}(n-\beta )}{% n-\beta }\left[ \int_{1+\alpha }^{\infty }\frac{f(x)dx}{[1+\ln (x-\alpha )\ln (n-\beta )]^{\lambda }}\right] ^{p}\right\} ^{\frac{1}{p}} \end{equation*}% \begin{equation} \leq \left[ B(\frac{\lambda }{2},\frac{\lambda }{2})\right] ^{\frac{1}{q}% }\left\{ \int_{1+\alpha }^{\infty }\varpi (x)(x-\alpha )^{p-1}\ln ^{p(1-% \frac{\lambda }{2})-1}(x-\alpha )f^{p}(x)dx\right\} ^{\frac{1}{p}}, \label{11} \end{equation}% \begin{eqnarray} L_{1} &:&=\left\{ \int_{1+\alpha }^{\infty }\frac{(x-\alpha )^{\frac{% q\lambda }{2}-1}}{[\varpi (x)]^{q-1}}\left[ \sum_{n=2}^{\infty }\frac{a_{n}}{% [1+\ln (x-\alpha )\ln (n-\beta )]^{\lambda }}\right] ^{q}dx\right\} ^{\frac{1% }{q}} \notag \\ &\leq &\left\{ B(\frac{\lambda }{2},\frac{\lambda }{2})\sum_{n=2}^{\infty }(n-\beta )^{q-1}\ln ^{q(1-\frac{\lambda }{2})-1}(n-\beta )a_{n}^{q}\right\} ^{\frac{1}{q}}. \label{12} \end{eqnarray} \end{lemma} \begin{proof} \emph{} Setting $k(x,n):=\frac{1}{[1+\ln (x-\alpha )\ln (n-\beta )]^{\lambda }},$ by H\"{o}lder's inequality (cf. \cite{K1}) and (\ref{10}), it follows \begin{eqnarray*} &&\left[ \int_{1+\alpha }^{\infty }\frac{f(x)dx}{[1+\ln (x-\alpha )\ln (n-\beta )]^{\lambda }}\right] ^{p} \\ &=&\left\{ \int_{1+\alpha }^{\infty }k(x,n)\left[ \frac{\ln ^{(1-\frac{% \lambda }{2})/q}(x-\alpha )}{\ln ^{(1-\frac{\lambda }{2})/p}(n-\beta )}\frac{% (x-\alpha )^{\frac{1}{q}}f(x)}{(n-\beta )^{\frac{1}{p}}}\right] \right. \end{eqnarray*}% \begin{eqnarray*} &&\times \left. \left[ \frac{\ln ^{(1-\frac{\lambda }{2})/p}(n-\beta )}{\ln ^{(1-\frac{\lambda }{2})/q}(x-\alpha )}\frac{(n-\beta )^{\frac{1}{p}}}{% (x-\alpha )^{\frac{1}{q}}}\right] dx\right\} ^{p} \\ &\leq &\int_{1+\alpha }^{\infty }k(x,n)\frac{(x-\alpha )^{p-1}\ln ^{(1-\frac{% \lambda }{2})(p-1)}(x-\alpha )}{(n-\beta )\ln ^{1-\frac{\lambda }{2}% }(n-\beta )}f^{p}(x)dx \end{eqnarray*}% \begin{equation*} \times \left\{ \int_{1+\alpha }^{\infty }k(x,n)\frac{(n-\beta )^{q-1}\ln ^{(1-\frac{\lambda }{2})(q-1)}(n-\beta )}{(x-\alpha )\ln ^{1-\frac{\lambda }{% 2}}(x-\alpha )}dx\right\} ^{p-1} \end{equation*}% \begin{eqnarray*} &=&\left\{ \omega (n)\frac{\ln ^{q(1-\frac{\lambda }{2})-1}(n-\beta )}{% (n-\beta )^{1-q}}\right\} ^{p-1} \\ &&\times \int_{1+\alpha }^{\infty }k(x,n)\frac{(x-\alpha )^{p-1}\ln ^{(1-% \frac{\lambda }{2})(p-1)}(x-\alpha )}{(n-\beta )\ln ^{1-\frac{\lambda }{2}% }(n-\beta )}f^{p}(x)dx \\ &=&\frac{\left[ B(\frac{\lambda }{2},\frac{\lambda }{2})\right] ^{p-1}(n-\beta )}{\ln ^{\frac{p\lambda }{2}-1}(n-\beta )}\int_{1+\alpha }^{\infty }k(x,n)\frac{(x-\alpha )^{p-1}\ln ^{(1-\frac{\lambda }{2}% )(p-1)}(x-\alpha )f^{p}(x)}{(n-\beta )\ln ^{1-\frac{\lambda }{2}}(n-\beta )}% dx. \end{eqnarray*} Then by the Lebesgue term by term integration theorem (cf. \cite{K2}), we have% \begin{eqnarray*} J &\leq &\left[ B(\frac{\lambda }{2},\frac{\lambda }{2})\right] ^{\frac{1}{q}% }\left\{ \sum_{n=2}^{\infty }\int_{1+\alpha }^{\infty }k(x,n)\frac{(x-\alpha )^{p-1}\ln ^{(1-\frac{\lambda }{2})(p-1)}(x-\alpha )}{(n-\beta )\ln ^{1-% \frac{\lambda }{2}}(n-\beta )}f^{p}(x)dx\right\} ^{\frac{1}{p}} \\ &=&\left[ B(\frac{\lambda }{2},\frac{\lambda }{2})\right] ^{\frac{1}{q}% }\left\{ \int_{1+\alpha }^{\infty }\sum_{n=2}^{\infty }k(x,n)\frac{(x-\alpha )^{p-1}\ln ^{(1-\frac{\lambda }{2})(p-1)}(x-\alpha )}{(n-\beta )\ln ^{1-% \frac{\lambda }{2}}(n-\beta )}f^{p}(x)dx\right\} ^{\frac{1}{p}} \\ &=&\left[ B(\frac{\lambda }{2},\frac{\lambda }{2})\right] ^{\frac{1}{q}% }\left\{ \int_{1+\alpha }^{\infty }\varpi (x)(x-\alpha )^{p-1}\ln ^{p(1-% \frac{\lambda }{2})-1}(x-\alpha )f^{p}(x)dx\right\} ^{\frac{1}{p}}, \end{eqnarray*} hence, (\ref{11}) follows. By H\"{o}lder's inequality again, we have \begin{equation*} \left[ \sum_{n=2}^{\infty }k(x,n)a_{n}\right] ^{q}=\left\{ \sum_{n=2}^{\infty }k(x,n)\left[ \frac{(x-\alpha )^{\frac{1}{q}}\ln ^{(1-% \frac{\lambda }{2})/q}(x-\alpha )}{(n-\beta )^{\frac{1}{p}}\ln ^{(1-\frac{% \lambda }{2})/p}(n-\beta )}\right] \right. \end{equation*}% \begin{eqnarray*} &&\times \left. \left[ \frac{\ln ^{(1-\frac{\lambda }{2})/p}(n-\beta )}{\ln ^{(1-\frac{\lambda }{2})/q}(x-\alpha )}\frac{(n-\beta )^{\frac{1}{p}}a_{n}}{% (x-\alpha )^{\frac{1}{q}}}\right] \right\} ^{q} \\ &\leq &\left\{ \sum_{n=2}^{\infty }k(x,n)\frac{(x-\alpha )^{p-1}\ln ^{(1-% \frac{\lambda }{2})(p-1)}(x-\alpha )}{(n-\beta )\ln ^{1-\frac{\lambda }{2}% }(n-\beta )}\right\} ^{q-1} \end{eqnarray*}% \begin{eqnarray*} &&\times \sum_{n=2}^{\infty }k(x,n)\frac{(n-\beta )^{q-1}\ln ^{(1-\frac{% \lambda }{2})(q-1)}(n-\beta )}{(x-\alpha )\ln ^{1-\frac{\lambda }{2}% }(x-\alpha )}a_{n}^{q} \\ &=&\frac{[\varpi (x)]^{q-1}(x-\alpha )}{\ln ^{\frac{q\lambda }{2}% -1}(x-\alpha )}\sum_{n=2}^{\infty }k(x,n)\frac{\ln ^{\frac{\lambda }{2}% -1}(x-\alpha )}{(x-\alpha )(n-\beta )^{1-q}}\ln ^{(1-\frac{\lambda }{2}% )(q-1)}(n-\beta )a_{n}^{q}. \end{eqnarray*}% By Lebesgue term by term integration theorem, we have% \begin{equation*} L_{1}\leq \left\{ \int_{1+\alpha }^{\infty }\sum_{n=2}^{\infty }k(x,n)\frac{% \ln ^{\frac{\lambda }{2}-1}(x-\alpha )}{(x-\alpha )}(n-\beta )^{q-1}\ln ^{(1-% \frac{\lambda }{2})(q-1)}(n-\beta )a_{n}^{q}dx\right\} ^{\frac{1}{q}} \end{equation*}% \begin{equation*} =\left\{ \sum_{n=2}^{\infty }\left[ \int_{1+\alpha }^{\infty }k(x,n)\frac{% \ln ^{\frac{\lambda }{2}}(n-\beta )\ln ^{\frac{\lambda }{2}-1}(x-\alpha )dx}{% x-\alpha }\right] \frac{\ln ^{q(1-\frac{\lambda }{2})-1}(n-\beta )}{(n-\beta )^{1-q}}a_{n}^{q}\right\} ^{\frac{1}{q}} \end{equation*}% \begin{equation*} =\left\{ \sum_{n=2}^{\infty }\omega (n)(n-\beta )^{q-1}\ln ^{q(1-\frac{% \lambda }{2})-1}(n-\beta )a_{n}^{q}\right\} ^{\frac{1}{q}}, \end{equation*}% and in view of (\ref{10}), inequality (\ref{12}) follows. \end{proof} \section{Main results} We introduce the functions% \begin{eqnarray*} \Phi (x) &:&=(x-\alpha )^{p-1}\ln ^{p(1-\frac{\lambda }{2})-1}(x-\alpha )^{{}}(x\in (1+\alpha ,\infty )), \\ \Psi (n) &:&=(n-\beta )^{q-1}\ln ^{q(1-\frac{\lambda }{2})-1}(n-\beta )^{{}}(n\in \mathbf{N\backslash \{}1\mathbf{\}}), \end{eqnarray*}% wherefrom $[\Phi (x)]^{1-q}$ $=\frac{1}{x-\alpha }\ln ^{\frac{q\lambda }{2}% -1}(x-\alpha ),$ and $[\Psi (n)]^{1-p}=\frac{1}{n-\beta }\ln ^{\frac{% p\lambda }{2}-1}(n-\beta )$. \begin{theorem} \textbf{} If $0<\lambda \leq 2,\alpha \in \mathbf{R},\beta \leq \frac{1}{2},$ $p>1,\frac{1}{p}+\frac{1}{q}=1,f(x),a_{n}\geq 0,$ $f\in L_{p,\Phi }(1+\alpha ,\infty ),a=\{a_{n}\}_{n=2}^{\infty }\in l_{q,\Psi },$ $% ||f||_{p,\Phi }>0$ and $||a||_{q,\Psi }>0,$ then we have the following equivalent inequalities:% \begin{eqnarray} I &:&=\sum_{n=2}^{\infty }\int_{1+\alpha }^{\infty }\frac{a_{n}f(x)dx}{% [1+\ln (x-\alpha )\ln (n-\beta )]^{\lambda }} \notag \\ &=&\int_{1+\alpha }^{\infty }\sum_{n=2}^{\infty }\frac{a_{n}f(x)dx}{[1+\ln (x-\alpha )\ln (n-\beta )]^{\lambda }}0,$ then by (\ref{13}), we have \begin{equation*} ||a||_{q,\Psi }^{q}=J^{q(p-1)}=J^{p}=I[B(\frac{\lambda }{2},% \frac{\lambda }{2})]^{1-q}.$ Then in view of (\ref{12}), we have (\ref{15}). By H\"{o}lder's inequality, we find% \begin{equation} I=\int_{1+\alpha }^{\infty }[\Phi ^{\frac{1}{p}}(x)f(x)]\left[ \Phi ^{\frac{% -1}{p}}(x)\sum_{n=2}^{\infty }\frac{a_{n}}{[1+\ln (x-\alpha )\ln (n-\beta )]^{\lambda }}\right] dx\leq ||f||_{p,\Phi }L. \label{17} \end{equation}% Then by (\ref{15}), we have (\ref{13}). On the other-hand, assume that (\ref% {13}) is valid. Setting% \begin{equation*} f(x):=[\Phi (x)]^{1-q}\left[ \sum_{n=2}^{\infty }\frac{a_{n}}{[1+\ln (x-\alpha )\ln (n-\beta )]^{\lambda }}\right] ^{q-1},x\in (1+\alpha ,\infty ), \end{equation*}% then $L^{q-1}=||f||_{p,\Phi }.$ By (\ref{12}), we find $L<\infty .$ If $L=0,$ then (\ref{15}) is trivially valid; if $L>0,$ then by (\ref{13}), we have% \begin{equation*} ||f||_{p,\Phi }^{p}=L^{p(q-1)}=I&B\left( \frac{\lambda }{2}+\frac{\varepsilon }{p},\frac{\lambda }{2}-% \frac{\varepsilon }{p}\right) \int_{2}^{\infty }\frac{dy}{(y-\beta )\ln ^{\varepsilon +1}(y-\beta )}-A(\varepsilon ) \notag \\ &=&\frac{1}{\varepsilon \ln ^{\varepsilon }(2-\beta )}B\left( \frac{\lambda }{2}+\frac{\varepsilon }{p},\frac{\lambda }{2}-\frac{\varepsilon }{p}\right) -A(\varepsilon ), \notag \\ A(\varepsilon ) &:&=\sum_{n=2}^{\infty }\frac{1}{(n-\beta )\ln ^{\varepsilon +1}(n-\beta )}\int_{\ln (n-\beta )}^{\infty }\frac{1}{(t+1)^{\lambda }}t^{% \frac{\lambda }{2}+\frac{\varepsilon }{p}-1}dt. \label{19} \end{eqnarray}% We find% \begin{eqnarray*} 0 &<&A(\varepsilon )\leq \sum_{n=2}^{\infty }\frac{1}{(n-\beta )\ln ^{\varepsilon +1}(n-\beta )}\int_{\ln (n-\beta )}^{\infty }\frac{1}{% t^{\lambda }}t^{\frac{\lambda }{2}+\frac{\varepsilon }{p}-1}dt \\ &=&\frac{1}{\frac{\lambda }{2}-\frac{\varepsilon }{p}}\sum_{n=2}^{\infty }% \frac{1}{(n-\beta )\ln ^{\frac{\lambda }{2}+\frac{\varepsilon }{q}% +1}(n-\beta )}<\infty , \end{eqnarray*}% and so $A(\varepsilon )=O(1)(\varepsilon \rightarrow 0^{+}).$ Hence by (\ref% {18}) and (\ref{19}), it follows that% \begin{eqnarray*} &&\frac{1}{\ln ^{\varepsilon }(2-\beta )}B\left( \frac{\lambda }{2}+\frac{% \varepsilon }{p},\frac{\lambda }{2}-\frac{\varepsilon }{p}\right) -\varepsilon O(1) \\ &<&k\left\{ \frac{\varepsilon }{(2-\beta )\ln ^{\varepsilon +1}(2-\beta )}+% \frac{1}{\ln ^{\varepsilon }(2-\beta )}\right\} ^{\frac{1}{q}}, \end{eqnarray*}% and\ $B(\frac{\lambda }{2},\frac{\lambda }{2})\leq k(\varepsilon \rightarrow 0^{+}).$ Hence $k=B(\frac{\lambda }{2},\frac{\lambda }{2})$ is the best value of (\ref{13}). By the equivalence of the inequalities, in view of (\ref{16}) and (\ref{17}), the constant factor $B(\frac{\lambda }{2},\frac{\lambda }{2})$ in (\ref{14}) and (\ref{15}) is the best possible. \end{proof} \begin{remark} \textbf{ } (i) Define the first type half-discrete Hilbert-type operator $T_{1}:L_{p,\Phi }(1+\alpha ,\infty )\rightarrow l_{p,\Psi ^{1-p}}$ as follows: For $f\in L_{p,\Phi }(1+\alpha ,\infty ),$ we define $T_{1}f$ $% \in l_{p,\Psi ^{1-p}}$ by% \begin{equation*} T_{1}f(n)=\int_{1+\alpha }^{\infty }\frac{1}{[1+\ln (x-\alpha )\ln (n-\beta )]^{\lambda }}f(x)dx,n\in \mathbf{N\backslash \{}1\mathbf{\}}. \end{equation*}% Then by (\ref{14}), $||T_{1}f||_{p.\Psi ^{1-p}}\leq B(\frac{\lambda }{2},% \frac{\lambda }{2})||f||_{p,\Phi }$ and so $T_{1}$ is a bounded operator with $||T_{1}||\leq B(\frac{\lambda }{2},\frac{\lambda }{2}).$ Since by Theorem 3.1, the constant factor in (\ref{14}) is best possible, we have $% ||T_{1}||=B(\frac{\lambda }{2},\frac{\lambda }{2}).$ (ii) Define the second type half-discrete Hilbert-type operator $% T_{2}:l_{q,\Psi }\rightarrow L_{q,\Phi ^{1-q}}(1+\alpha ,\infty )$ as follows: For $a\in l_{q,\Psi },$ we define $T_{2}a$ $\in L_{q,\Phi ^{1-q}}(1+\alpha ,\infty )$ by% \begin{equation*} T_{2}a(x)=\sum_{n=2}^{\infty }\frac{1}{[1+\ln (x-\alpha )\ln (n-\beta )]^{\lambda }}a_{n},x\in (1+\alpha ,\infty ). \end{equation*}% Then by (\ref{15}), $||T_{2}a||_{q.\Phi ^{1-q}}\leq B(\frac{\lambda }{2},% \frac{\lambda }{2})||a||_{q,\Psi }$ and so $T_{2}$ is a bounded operator with $||T_{2}||\leq B(\frac{\lambda }{2},\frac{\lambda }{2}).$ Since by Theorem 3.1, the constant factor in (\ref{15}) is best possible, we have $% ||T_{2}||=B(\frac{\lambda }{2},\frac{\lambda }{2}).$ \end{remark} \begin{remark} \textbf{ }For $p=q=2,\lambda =1$ in (\ref{13}), (\ref{14}) and (\ref% {15}), (i) if $\alpha =\beta =\frac{1}{2},$ then we have (\ref{7}) and the following equivalent inequalities:% \begin{equation*} \sum_{n=2}^{\infty }\frac{1}{n-\frac{1}{2}}\left[ \int_{\frac{3}{2}}^{\infty }\frac{f(x)dx}{1+\ln (x-\frac{1}{2})\ln (n-\frac{1}{2})}\right] ^{2}<\pi ^{2}\int_{\frac{3}{2}}^{\infty }(x-\frac{1}{2})f^{2}(x)dx, \label{20} \end{equation*}% \begin{equation*} \int_{\frac{3}{2}}^{\infty }\frac{1}{x-\frac{1}{2}}\left[ \sum_{n=2}^{\infty }\frac{a_{n}}{1+\ln (x-\frac{1}{2})\ln (n-\frac{1}{2})}\right] ^{2}dx<\pi ^{2}\sum_{n=2}^{\infty }(n-\frac{1}{2})a_{n}^{2}; \label{21} \end{equation*}% (ii) if $\alpha =\beta =0,$ then we have the following equivalent inequalities% \begin{equation*} \int_{1}^{\infty }f(x)\sum_{n=2}^{\infty }\frac{a_{n}}{1+\ln x\ln n}dx<\pi \left\{ \int_{1}^{\infty }xf^{2}(x)dx\sum_{n=2}^{\infty }na_{n}^{2}\right\} ^{\frac{1}{2}}, \label{22} \end{equation*}% \begin{equation*} \sum_{n=2}^{\infty }\frac{1}{n}\left[ \int_{1}^{\infty }\frac{f(x)}{1+\ln x\ln n}dx\right] ^{2}<\pi ^{2}\int_{1}^{\infty }xf^{2}(x)dx, \label{23} \end{equation*}% \begin{equation*} \int_{1}^{\infty }\frac{1}{x}\left[ \sum_{n=2}^{\infty }\frac{a_{n}}{1+\ln x\ln n}\right] ^{2}dx<\pi ^{2}\sum_{n=2}^{\infty }na_{n}^{2}. \label{24} \end{equation*} \end{remark} \textbf{Acknowledgement.} This work is supported by Chinese Guangdong Natural Science Foundation (No. 7004344). \bibliographystyle{amsplain} \begin{thebibliography}{99} \bibitem{LA} L. Azar, \textit{On some extensions of Hardy-Hilbert's inequality and Applications}, J. Inequal. App. \textbf{2008}, Art. ID 546829, 14 pp. \bibitem{A1} B. Arpad and O. choonghong, \textit{Best constant for certain multilinear integral operator}, J. Inequal. Appl. \textbf{2006}, Art. ID 28582, 12 pp. \bibitem{HLP} G.H. Hardy, J.E. Littlewood and G. P\'clya, \textit{Inequalities}, Cambridge University Press, Cambridge, 1934. \bibitem{JD} J. Jin and L. Debnath, \textit{On a Hilbert-type linear series operator and its applications}, J. Math. Anal. Appl. \textbf{371} (2010), no. 2, 691--704. \bibitem{KP} M. Krni\'{c} and J. Pe\v{c}ari\'{c}, \textit{Hilbert's inequalities and their reverses}, Publ. Math. Debrecen, \textbf{67} (2005), no. 3-4, 315--331. \bibitem{JD} J. Kuang and L. Debnath, \textit{On Hilbert's type inequalities on the weighted Orlicz spaces}, Pacific J. Appl. Math. \textbf{1} (2007), no. 1, 95--103. \bibitem{K1} J. Kuang, \textit{Applied Inequalities}, Shangdong Science Technic Press, Jinan, 2004 (China). \bibitem{K2} J. Kuang, \textit{Introduction to Real Analysis}, Hunan Education Press, Chansha, 1996 (China). \bibitem{LH} Y. Li and B. He,\textit{ On inequalities of Hilbert's type}, Bull. Austral. Math. Soc. \textbf{76} (2007), no. 1, 1--13. \bibitem{MPF} D.S. Mitrinovi\'{c}, J. Pe\v{c}ari\'{c} and A.M. Fink, \textit{Inequalities Involving Functions and their Integrals and Derivatives}, Kluwer Acaremic Publishers, Boston, 1991. \bibitem{Y1} B. Yang, \textit{Hilbert-type Integral Inequalities}, Bentham Science Publishers Ltd., 2009. \bibitem{Y2} B. Yang, \textit{Discrete Hilbert-type Inequalities}, Bentham Science Publishers Ltd., 2011. \bibitem{Y7} B. Yang, \textit{An extension of Mulholand's inequality}, Jordan J. Math. Stat \textbf{3} (2010), no.3, 151--157. \bibitem{Y3} B. Yang, \textit{On Hilbert's integral inequality}, J. Math. Anal. Appl. \textbf{220} (1998), 778--785. \bibitem{Y4} B. Yang, \textit{The Norm of Operator and Hilbert-type Inequalities}, Science Press, Beijin, 2009 (China). \bibitem{YMP} B. Yang and I. Brneti\'c, M. Krni\'c and J. Pe\v{c}ari\'c, \textit{Generalization of Hilbert and Hardy-Hilbert integral inequalities}, Math. Ineq. and Appl. \textbf{8} (2005), no. 2, 259--272. \bibitem{YR} B. Yang and Th.M. Rassias, \textit{On the way of weight coefficient and research for Hilbert-type inequalities}, Math. Inequal. Appl., \textbf{6} (2003), no. 4, 625--658. \bibitem{Y5} B. Yang, \textit{A mixed Hilbert-type inequality with a best constant factor}, Int. J. Pure Appl. Math. \textbf{20} (2005), no. 3, 319--328. \bibitem{Y6} B. Yang, \textit{A half-discrete Hilbert's inequality}, J. Guangdong Univ. Edu. \textbf{31} (2011), no. 3, 1--7. \bibitem{Y7} B. Yang and Q. Chen, \textit{A half-discrete Hilbert-type inequality with a homogeneous kernel and an extension}, J. Inequal. Appl. \textbf{124} (2011), doi: 10.1186/1029-242X-2011-124. \bibitem{YR} B. Yang and Th.M. Rassias, \textit{On a Hilbert-type integral inequality in the subinterval and its operator expression}, Banach J. Math. Anal. \textbf{4} (2010), no. 2, 100--110. \bibitem{WZ} W. Zhong, \textit{The Hilbert-type integral inequality with a homogeneous kernel of Lambda-degree}, J. Inequal. Appl. \textbf{2008}, no. 917392, 12 pp. \end{thebibliography} \end{document} %------------------------------------------------------------------------------ % End of journal.tex %------------------------------------------------------------------------------ .