%------------------------------------------------------------------------------ % Here please write the date of submission of paper or its revisions: %------------------------------------------------------------------------------ % \documentclass[12pt, reqno]{amsart} \usepackage{amsmath, amsthm, amscd, amsfonts, amssymb, graphicx, color} \usepackage[bookmarksnumbered, colorlinks, plainpages]{hyperref} \textheight 22.5truecm \textwidth 14.5truecm \setlength{\oddsidemargin}{0.35in}\setlength{\evensidemargin}{0.35in} \setlength{\topmargin}{-.5cm} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{exercise}[theorem]{Exercise} \newtheorem{conclusion}[theorem]{Conclusion} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{criterion}[theorem]{Criterion} \newtheorem{summary}[theorem]{Summary} \newtheorem{axiom}[theorem]{Axiom} \newtheorem{problem}[theorem]{Problem} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \numberwithin{equation}{section} \input{mathrsfs.sty} \begin{document} \setcounter{page}{128} \noindent\parbox{2.95cm}{\includegraphics*[keepaspectratio=true,scale=0.125]{AFA.jpg}} \noindent\parbox{4.85in}{\hspace{0.1mm}\\[1.5cm]\noindent \qquad Ann. Funct. Anal. 3 (2012), no. 1, 128--141\\ {\footnotesize \qquad \textsc{\textbf{$\mathscr{A}$}nnals of \textbf{$\mathscr{F}$}unctional \textbf{$\mathscr{A}$}nalysis}\\ \qquad ISSN: 2008-8752 (electronic)\\ \qquad URL: \textcolor[rgb]{0.00,0.00,0.99}{www.emis.de/journals/AFA/} }\\[.5in]} \title[Wavelet characterization of Herz-type Hardy spaces]{The wavelet characterization of Herz-type Hardy spaces with variable exponent} \author[H. Wang, Z. Liu]{Hongbin Wang$^1$$^{*}$ and Zongguang Liu$^2$} \address{$^{1}$ Department of Mathematics, China University of Mining and Technology(Beijing), Beijing 100083, P. R. China.} \email{\textcolor[rgb]{0.00,0.00,0.84}{hbwang\_2006@163.com}} \address{$^{2}$ Department of Mathematics, China University of Mining and Technology(Beijing), Beijing 100083, P. R. China.} \email{\textcolor[rgb]{0.00,0.00,0.84}{liuzg@cumtb.edu.cn}} \dedicatory{{\rm Communicated by O. Christensen }} \subjclass[2010]{Primary 46E30; Secondary 42B35, 42C40.} \keywords{Herz-type Hardy space, variable exponent, tent space, wavelet.} \date{Received: 27 November 2011; Accepted: 2 March 2012. \newline \indent $^{*}$ Corresponding author} \begin{abstract} In this paper, using the atomic theory of the Herz-type Hardy spaces with variable exponent, we give their wavelet characterization by means of some discrete tent spaces with variable exponent at the origin. \end{abstract} \maketitle \section{Introduction and preliminaries} The theory of function spaces with variable exponent has developed since the paper \cite{K-R} of Kov\'{a}\v{c}ik and J.R\'{a}kosn\'{i}k appeared in 1991. In \cite{HWY,L-Y}, Hern\'{a}ndez, Lu, Weiss and Yang gave the $\varphi$-transform and wavelet characterizations of Herz-type spaces. In addition, Kopaliani and Izuki introduced the wavelets inequalities of Lebesgue spaces with variable exponent in \cite{KOP2} and \cite{IZU1}, respectively. Recently, the authors \cite{W-L} defined the Herz-type Hardy spaces with variable exponent and gave their atomic characterizations. Inspired by the aforementioned references, we give the wavelet characterization of the Herz-type Hardy spaces with variable exponent by using the atomic decomposition theory in Section 3. And for this purpose, firstly in Section 2 we will introduce a kind of discrete tent space with variable exponent. To be precise, we first briefly recall some standard notations in the remainder of this section. Given an open set $\Omega\subset \mathbb{R}^{n}$, and a measurable function $p(\cdot):\Omega\rightarrow[1,\infty),$ $L^{p(\cdot)}(\Omega)$ denotes the set of measurable functions $f$ on $\Omega$ such that for some $\lambda>0,$ $$\int_\Omega\left(\frac{|f(x)|}{\lambda}\right)^{p(x)}dx < \infty.$$ This set becomes a Banach function space when equipped with the Luxemburg-Nakano norm $$\|f\|_{L^{p(\cdot)}(\Omega)}=\inf\left\{\lambda>0:\int_\Omega \left(\frac{|f(x)|}{\lambda}\right)^{p(x)}dx \leq 1\right\}.$$ These spaces are referred to as variable Lebesgue spaces or, more simply, as variable $L^{p}$ spaces, since they generalized the standard $L^{p}$ spaces: if $p(x)=p$ is a constant, then $L^{p(\cdot)}(\Omega)$ is isometrically isomorphic to $L^{p}(\Omega)$. The variable $L^{p}$ spaces are a special case of Musielak-Orlicz spaces. For all compact subsets $E\subset \Omega$, the space $L_{\rm loc}^{p(\cdot)}(\Omega)$ is defined by $L_{\rm loc}^{p(\cdot)}(\Omega):=\{f: f\in L^{p(\cdot)}(E)\}.$ Define $\mathcal{P}(\Omega)$ to be the set of $p(\cdot):\Omega\rightarrow[1,\infty)$ such that $$1
0$ such that for all cubes $Q$ in $\mathbb{R}^{n}$, $$\frac{1}{|Q|}\|\chi_Q\|_{L^{q(\cdot)}(\mathbb{R}^{n})}\|\chi_Q\|_{L^{q'(\cdot)}(\mathbb{R}^{n})}\leq C.$$ \end{lemma} Next we give the definition of the Herz spaces with variable exponent. Let $Q_k=\{x=(x_1,\cdot\cdot\cdot,x_n)\in \mathbb{R}^{n}: |x_i|\leq 2^k\}$ and $A_k=Q_k\setminus Q_{k-1}$ for $k\in \mathbb{Z}$. Denote $\mathbb{Z}_+$ as the set of positive integers, $\chi_k=\chi_{A_k}$ for $k\in \mathbb{Z}$, $\tilde{\chi}_k=\chi_k$ if $k\in \mathbb{Z}_+$ and $\tilde{\chi}_0=\chi_{Q_0}$. Similar to the definition of \cite{IZU2}, we have \begin{definition} Let $\alpha\in \mathbb{R}, 0
n+1$, $\phi^*_\nabla$ is
the nontangential maximal operator defined by
$$\phi^*_\nabla(f)(x)=\sup_{|y-x| 2^{l-1}-2^{l-2}=2^{l-2}$, where $l\geq k+3$. So $j\leq
m_0+3-l$. It is observed that $a$ is a central $(\alpha,
q(\cdot))$-atom and $\psi$ is $\gamma$-regular with $\gamma\geq
\alpha-n\delta_2+1$. Let $\gamma_0= \alpha-n\delta_2$ and
$P_{\gamma_0}(x)$ be the $\gamma_0$-order Taylor expansion for
$\psi_\lambda(x)$ at 0. Then we have
$$\begin{array}{rl}
\displaystyle |\langle a,
\psi_\lambda\rangle|&\displaystyle\leq \int_{\mathbb{R}^{n}} |a(x)||\psi_\lambda(x)-P_{\gamma_0}(x)|dx\\
&\displaystyle\leq C2^{nj/2}2^{j(\gamma_0+1)}\int_{\mathbb{R}^{n}}
|a(x)||x|^{\gamma_0+1}dx\\
&\displaystyle\leq
C2^{nj/2+(j+k)(\gamma_0+1)-k\alpha}\|\chi_{Q_k}\|_{L^{q'(\cdot)}(\mathbb{R}^{n})}.
\end{array}$$
On the other hand, it is easy to show that for any given $j$, the
number of $\lambda$ in $\Lambda^k$ is less than an absolute constant
$C_0$. Therefore, if $x\in A_l$ with $l\geq k+3$, then by the
generalized H\"{o}lder inequality we have
$$\begin{array}{rl}
\displaystyle
[S(a)(x)]^2&\displaystyle=\sum_{\lambda\in\Lambda}|\langle a,
\psi_\lambda\rangle|^2|Q(\lambda)|^{-1}\chi_{Q(\lambda)}(x)\\
&\displaystyle=\sum_{\lambda\in\Lambda^k}|\langle a,
\psi_\lambda\rangle|^2|Q(\lambda)|^{-1}\chi_{Q(\lambda)}(x)\\
&\displaystyle\leq
C_0\sum_{j=-\infty}^{m_0+3-l}2^{2j(n/2+\gamma_0+1)+2k(\gamma_0+1-\alpha)+nj}\|\chi_{Q_k}\|^2_{L^{q'(\cdot)}(\mathbb{R}^{n})}\\
&\displaystyle\leq
C_02^{2k(\gamma_0+1-\alpha)-2l(n+\gamma_0+1)}\|\chi_{Q_k}\|^2_{L^{q'(\cdot)}(\mathbb{R}^{n})}.
\end{array}$$
That is, $$S(a)(x)\leq
C_02^{k(\gamma_0+1-\alpha)-l(n+\gamma_0+1)}\|\chi_{Q_k}\|_{L^{q'(\cdot)}(\mathbb{R}^{n})}.$$
So by Lemma \ref{1.2} and Lemma \ref{1.5} we have
$$\begin{array}{rl}
\displaystyle I_2&\displaystyle\leq C \sum_{l=k+3}^\infty
2^{(l-k)(\alpha-\gamma_0-1)p}2^{-lnp}\|\chi_{Q_k}\|^p_{L^{q'(\cdot)}(\mathbb{R}^{n})}\|\chi_{Q_l}\|^p_{L^{q(\cdot)}(\mathbb{R}^{n})}\\
&\displaystyle\leq C \sum_{l=k+3}^\infty
2^{(l-k)(\alpha-\gamma_0-1)p}2^{-lnp}\|\chi_{Q_k}\|^p_{L^{q'(\cdot)}(\mathbb{R}^{n})}(|Q_l|\|\chi_{Q_l}\|^{-1}_{L^{q'(\cdot)}(\mathbb{R}^{n})})^p\\
&\displaystyle\leq C \sum_{l=k+3}^\infty
2^{(l-k)(\alpha-\gamma_0-1)p}\left(\frac{\|\chi_{Q_k}\|_{L^{q'(\cdot)}(\mathbb{R}^{n})}}{\|\chi_{Q_l}\|_{L^{q'(\cdot)}(\mathbb{R}^{n})}}\right)^p\\
&\displaystyle\leq C \sum_{l=k+3}^\infty
2^{(l-k)(\alpha-n\delta_2-\gamma_0-1)p}=C<\infty.
\end{array}$$
When $1