%------------------------------------------------------------------------------ % Here please write the date of submission of paper or its revisions: %------------------------------------------------------------------------------ % \documentclass[12pt, reqno]{amsart} \usepackage{amsmath, amsthm, amscd, amsfonts, amssymb, graphicx, color} \usepackage[bookmarksnumbered, colorlinks, plainpages]{hyperref} \textheight 22.5truecm \textwidth 14.5truecm \setlength{\oddsidemargin}{0.35in}\setlength{\evensidemargin}{0.35in} \setlength{\topmargin}{-.5cm} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{exercise}[theorem]{Exercise} \newtheorem{conclusion}[theorem]{Conclusion} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{criterion}[theorem]{Criterion} \newtheorem{summary}[theorem]{Summary} \newtheorem{axiom}[theorem]{Axiom} \newtheorem{problem}[theorem]{Problem} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \numberwithin{equation}{section} \input{mathrsfs.sty} \begin{document} \setcounter{page}{128} \noindent\parbox{2.95cm}{\includegraphics*[keepaspectratio=true,scale=0.125]{AFA.jpg}} \noindent\parbox{4.85in}{\hspace{0.1mm}\\[1.5cm]\noindent \qquad Ann. Funct. Anal. 3 (2012), no. 1, 128--141\\ {\footnotesize \qquad \textsc{\textbf{$\mathscr{A}$}nnals of \textbf{$\mathscr{F}$}unctional \textbf{$\mathscr{A}$}nalysis}\\ \qquad ISSN: 2008-8752 (electronic)\\ \qquad URL: \textcolor[rgb]{0.00,0.00,0.99}{www.emis.de/journals/AFA/} }\\[.5in]} \title[Wavelet characterization of Herz-type Hardy spaces]{The wavelet characterization of Herz-type Hardy spaces with variable exponent} \author[H. Wang, Z. Liu]{Hongbin Wang$^1$$^{*}$ and Zongguang Liu$^2$} \address{$^{1}$ Department of Mathematics, China University of Mining and Technology(Beijing), Beijing 100083, P. R. China.} \email{\textcolor[rgb]{0.00,0.00,0.84}{hbwang\_2006@163.com}} \address{$^{2}$ Department of Mathematics, China University of Mining and Technology(Beijing), Beijing 100083, P. R. China.} \email{\textcolor[rgb]{0.00,0.00,0.84}{liuzg@cumtb.edu.cn}} \dedicatory{{\rm Communicated by O. Christensen }} \subjclass[2010]{Primary 46E30; Secondary 42B35, 42C40.} \keywords{Herz-type Hardy space, variable exponent, tent space, wavelet.} \date{Received: 27 November 2011; Accepted: 2 March 2012. \newline \indent $^{*}$ Corresponding author} \begin{abstract} In this paper, using the atomic theory of the Herz-type Hardy spaces with variable exponent, we give their wavelet characterization by means of some discrete tent spaces with variable exponent at the origin. \end{abstract} \maketitle \section{Introduction and preliminaries} The theory of function spaces with variable exponent has developed since the paper \cite{K-R} of Kov\'{a}\v{c}ik and J.R\'{a}kosn\'{i}k appeared in 1991. In \cite{HWY,L-Y}, Hern\'{a}ndez, Lu, Weiss and Yang gave the $\varphi$-transform and wavelet characterizations of Herz-type spaces. In addition, Kopaliani and Izuki introduced the wavelets inequalities of Lebesgue spaces with variable exponent in \cite{KOP2} and \cite{IZU1}, respectively. Recently, the authors \cite{W-L} defined the Herz-type Hardy spaces with variable exponent and gave their atomic characterizations. Inspired by the aforementioned references, we give the wavelet characterization of the Herz-type Hardy spaces with variable exponent by using the atomic decomposition theory in Section 3. And for this purpose, firstly in Section 2 we will introduce a kind of discrete tent space with variable exponent. To be precise, we first briefly recall some standard notations in the remainder of this section. Given an open set $\Omega\subset \mathbb{R}^{n}$, and a measurable function $p(\cdot):\Omega\rightarrow[1,\infty),$ $L^{p(\cdot)}(\Omega)$ denotes the set of measurable functions $f$ on $\Omega$ such that for some $\lambda>0,$ $$\int_\Omega\left(\frac{|f(x)|}{\lambda}\right)^{p(x)}dx < \infty.$$ This set becomes a Banach function space when equipped with the Luxemburg-Nakano norm $$\|f\|_{L^{p(\cdot)}(\Omega)}=\inf\left\{\lambda>0:\int_\Omega \left(\frac{|f(x)|}{\lambda}\right)^{p(x)}dx \leq 1\right\}.$$ These spaces are referred to as variable Lebesgue spaces or, more simply, as variable $L^{p}$ spaces, since they generalized the standard $L^{p}$ spaces: if $p(x)=p$ is a constant, then $L^{p(\cdot)}(\Omega)$ is isometrically isomorphic to $L^{p}(\Omega)$. The variable $L^{p}$ spaces are a special case of Musielak-Orlicz spaces. For all compact subsets $E\subset \Omega$, the space $L_{\rm loc}^{p(\cdot)}(\Omega)$ is defined by $L_{\rm loc}^{p(\cdot)}(\Omega):=\{f: f\in L^{p(\cdot)}(E)\}.$ Define $\mathcal{P}(\Omega)$ to be the set of $p(\cdot):\Omega\rightarrow[1,\infty)$ such that $$10$ such that for all cubes $Q$ in $\mathbb{R}^{n}$, $$\frac{1}{|Q|}\|\chi_Q\|_{L^{q(\cdot)}(\mathbb{R}^{n})}\|\chi_Q\|_{L^{q'(\cdot)}(\mathbb{R}^{n})}\leq C.$$ \end{lemma} Next we give the definition of the Herz spaces with variable exponent. Let $Q_k=\{x=(x_1,\cdot\cdot\cdot,x_n)\in \mathbb{R}^{n}: |x_i|\leq 2^k\}$ and $A_k=Q_k\setminus Q_{k-1}$ for $k\in \mathbb{Z}$. Denote $\mathbb{Z}_+$ as the set of positive integers, $\chi_k=\chi_{A_k}$ for $k\in \mathbb{Z}$, $\tilde{\chi}_k=\chi_k$ if $k\in \mathbb{Z}_+$ and $\tilde{\chi}_0=\chi_{Q_0}$. Similar to the definition of \cite{IZU2}, we have \begin{definition} Let $\alpha\in \mathbb{R}, 0n+1$, $\phi^*_\nabla$ is the nontangential maximal operator defined by $$\phi^*_\nabla(f)(x)=\sup_{|y-x|n+1$. (i)The homogeneous Herz-type Hardy space $H\dot{K}^{\alpha,p}_{q(\cdot)}(\mathbb{R}^{n})$ is defined by $$H\dot{K}^{\alpha,p}_{q(\cdot)}(\mathbb{R}^{n})=\{f\in \mathcal{S'}(\mathbb{R}^{n}): G_Nf(x)\in\dot{K}^{\alpha,p}_{q(\cdot)}(\mathbb{R}^{n})\}$$ and we define $\|f\|_{H\dot{K}^{\alpha,p}_{q(\cdot)}(\mathbb{R}^{n})}=\|G_Nf\|_{\dot{K}^{\alpha,p}_{q(\cdot)}(\mathbb{R}^{n})}$. (ii)The non-homogeneous Herz-type Hardy space $HK^{\alpha,p}_{q(\cdot)}(\mathbb{R}^{n})$ is defined by $$HK^{\alpha,p}_{q(\cdot)}(\mathbb{R}^{n})=\{f\in \mathcal{S'}(\mathbb{R}^{n}): G_Nf(x)\in K^{\alpha,p}_{q(\cdot)}(\mathbb{R}^{n})\}$$ and we define $\|f\|_{HK^{\alpha,p}_{q(\cdot)}(\mathbb{R}^{n})}=\|G_Nf\|_{K^{\alpha,p}_{q(\cdot)}(\mathbb{R}^{n})}$. \end{definition} For $x\in\mathbb{R}$ we denote by $[x]$ the largest integer less than or equal to $x$. Similar to the results of \cite{W-L}, we have the following definition and lemma. \begin{definition} Let $n\delta_2\leq\alpha<\infty, q(\cdot)\in \mathcal{B}(\mathbb{R}^{n})$ and non-negative integer $s\geq [\alpha-n\delta_2]$. (i) A function $a$ on $\mathbb{R}^{n}$ is said to be a central $(\alpha, q(\cdot))$-atom, if it satisfies \hspace{3mm}(1) supp\,$a\subset B(0,r)=\{x\in \mathbb{R}^{n}:|x|0$. \hspace{3mm}(2) $\|a\|_{L^{q(\cdot)}(\mathbb{R}^{n})}\leq |B(0,r)|^{-\alpha/n}$. \hspace{3mm}(3) $\int_{\mathbb{R}^{n}}a(x)x^\beta dx=0$, for any multi-index $\beta$ with $|\beta|\leq s$. (ii) A function $a$ on $\mathbb{R}^{n}$ is said to be a central $(\alpha, q(\cdot))$-atom of restricted type, if it satisfies the conditions (2), (3) above and \hspace{3mm}(1)$'$ supp\,$a\subset B(0,r)$, for some $r\geq 1$. \end{definition} \begin{lemma}\label{1.9} Let $n\delta_2\leq\alpha<\infty, 02^{l-1}-2^{l-2}=2^{l-2}$, where $l\geq k+3$. So $j\leq m_0+3-l$. It is observed that $a$ is a central $(\alpha, q(\cdot))$-atom and $\psi$ is $\gamma$-regular with $\gamma\geq \alpha-n\delta_2+1$. Let $\gamma_0= \alpha-n\delta_2$ and $P_{\gamma_0}(x)$ be the $\gamma_0$-order Taylor expansion for $\psi_\lambda(x)$ at 0. Then we have $$\begin{array}{rl} \displaystyle |\langle a, \psi_\lambda\rangle|&\displaystyle\leq \int_{\mathbb{R}^{n}} |a(x)||\psi_\lambda(x)-P_{\gamma_0}(x)|dx\\ &\displaystyle\leq C2^{nj/2}2^{j(\gamma_0+1)}\int_{\mathbb{R}^{n}} |a(x)||x|^{\gamma_0+1}dx\\ &\displaystyle\leq C2^{nj/2+(j+k)(\gamma_0+1)-k\alpha}\|\chi_{Q_k}\|_{L^{q'(\cdot)}(\mathbb{R}^{n})}. \end{array}$$ On the other hand, it is easy to show that for any given $j$, the number of $\lambda$ in $\Lambda^k$ is less than an absolute constant $C_0$. Therefore, if $x\in A_l$ with $l\geq k+3$, then by the generalized H\"{o}lder inequality we have $$\begin{array}{rl} \displaystyle [S(a)(x)]^2&\displaystyle=\sum_{\lambda\in\Lambda}|\langle a, \psi_\lambda\rangle|^2|Q(\lambda)|^{-1}\chi_{Q(\lambda)}(x)\\ &\displaystyle=\sum_{\lambda\in\Lambda^k}|\langle a, \psi_\lambda\rangle|^2|Q(\lambda)|^{-1}\chi_{Q(\lambda)}(x)\\ &\displaystyle\leq C_0\sum_{j=-\infty}^{m_0+3-l}2^{2j(n/2+\gamma_0+1)+2k(\gamma_0+1-\alpha)+nj}\|\chi_{Q_k}\|^2_{L^{q'(\cdot)}(\mathbb{R}^{n})}\\ &\displaystyle\leq C_02^{2k(\gamma_0+1-\alpha)-2l(n+\gamma_0+1)}\|\chi_{Q_k}\|^2_{L^{q'(\cdot)}(\mathbb{R}^{n})}. \end{array}$$ That is, $$S(a)(x)\leq C_02^{k(\gamma_0+1-\alpha)-l(n+\gamma_0+1)}\|\chi_{Q_k}\|_{L^{q'(\cdot)}(\mathbb{R}^{n})}.$$ So by Lemma \ref{1.2} and Lemma \ref{1.5} we have $$\begin{array}{rl} \displaystyle I_2&\displaystyle\leq C \sum_{l=k+3}^\infty 2^{(l-k)(\alpha-\gamma_0-1)p}2^{-lnp}\|\chi_{Q_k}\|^p_{L^{q'(\cdot)}(\mathbb{R}^{n})}\|\chi_{Q_l}\|^p_{L^{q(\cdot)}(\mathbb{R}^{n})}\\ &\displaystyle\leq C \sum_{l=k+3}^\infty 2^{(l-k)(\alpha-\gamma_0-1)p}2^{-lnp}\|\chi_{Q_k}\|^p_{L^{q'(\cdot)}(\mathbb{R}^{n})}(|Q_l|\|\chi_{Q_l}\|^{-1}_{L^{q'(\cdot)}(\mathbb{R}^{n})})^p\\ &\displaystyle\leq C \sum_{l=k+3}^\infty 2^{(l-k)(\alpha-\gamma_0-1)p}\left(\frac{\|\chi_{Q_k}\|_{L^{q'(\cdot)}(\mathbb{R}^{n})}}{\|\chi_{Q_l}\|_{L^{q'(\cdot)}(\mathbb{R}^{n})}}\right)^p\\ &\displaystyle\leq C \sum_{l=k+3}^\infty 2^{(l-k)(\alpha-n\delta_2-\gamma_0-1)p}=C<\infty. \end{array}$$ When $1