%------------------------------------------------------------------------------ % Here please write the date of submission of paper or its revisions: %------------------------------------------------------------------------------ % \documentclass[12pt, reqno]{amsart} \usepackage{amsmath, amsthm, amscd, amsfonts, amssymb, graphicx, color} \usepackage[bookmarksnumbered, colorlinks, plainpages]{hyperref} \textheight 22.5truecm \textwidth 14.5truecm \setlength{\oddsidemargin}{0.35in}\setlength{\evensidemargin}{0.35in} \setlength{\topmargin}{-.5cm} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{exercise}[theorem]{Exercise} \newtheorem{conclusion}[theorem]{Conclusion} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{criterion}[theorem]{Criterion} \newtheorem{summary}[theorem]{Summary} \newtheorem{axiom}[theorem]{Axiom} \newtheorem{problem}[theorem]{Problem} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \numberwithin{equation}{section} \def\CF{{\mathcal F}} \def\CK{{\mathcal K}} \def\CH{{\mathcal H}} \def\CJ{{\mathcal J}} \def\CL{{\mathcal L}} \def\CO{{\mathcal O}} \def\CB{{\mathcal B}} \def\CU{{\mathcal U}} \def\CS{{\mathcal S}} \def\CP{{\mathcal P}} \def\a{{\mathfrak a}} \def\b{{\mathfrak b}} \def\m{{\mathbf m}} \def\n{{\mathbf n}} %\def\u{{\mathbf u}} \def\v{{\mathbf v}} \def\w{{\mathbf w}} \def\x{{\mathbf x}} \def\y{{\mathbf y}} \def\z{{\mathbf z}} \def\l{{\mathbf l}} \def\j{{\mathbf j}} %\def\h{{\mathbf h}} %\def\k{{\mathbf k}} %\def\p{{\mathbf p}} \def\h{{\mathfrak h}} \def\g{{\mathfrak g}} \def\u{{\mathfrak u}} \def\k{{\mathfrak k}} \def\p{{\mathfrak p}} \def\A{{\mathbb A}} \def\E{{\mathbb E}} \def\C{{\mathbb C}} \def\H{{\mathbb H}} \def\N{{\mathbb N}} \def\R{{\mathbb R}} \def\S{{\mathbb S}} \def\W{{\mathbb W}} \def\Z{{\mathbb Z}} \def\T{{\mathbb T}} \def\F{{\mathbb F}} \def\Nn{{\mathbb N^n}} \def\Rn{{\mathbb R}^{n}} \def\Cn{{\mathbb C}^n} \def\Hn{{{\mathbb H}^n}} \def\Lc{{L^1(\mathbb C^n)}} \def\Lh{{L^1(\mathbb H^n)}} \def\Lr{{L^2(\mathbb R^n)}} \def\BLR{{\mathcal B(L^2(\mathbb R^n))}} \def\llh{{L^{2}(\mathbb H^n)}} \def\lam{{\lambda}} \def\phab{{\overline{\Phi}_{\alpha \beta}}} \def\phba{{\overline{\Phi}_{\beta \alpha}}} \def\phmn{{\overline{\Phi}_{\mu \nu}}} \def\qab{{Q_{\alpha \beta}}} \def\qba{{Q_{\beta \alpha}}} \def\qac{{Q_{\alpha \gamma}}} \def\qca{{Q_{\gamma \alpha}}} \def\qbc{{Q_{\beta \gamma}}} \def\qmn{{Q_{\mu \nu}}} \def\qnm{{Q_{\nu \mu}}} \def\qbb{{Q_{\beta \beta}}} \def\qaa{{Q_{\alpha \alpha}}} \def\uaj{{u_{\alpha}^j}} \def\uak{u_{\alpha}^k} \def\vabj{{v_{\alpha,\beta}^j}} \def\vack{{v_{\alpha,\gamma}^k}} \def\vanj{{v_{\alpha,\nu}^j}} \def\uuaj{{U_{\alpha}^j}} \def\uuajs{{U_{\alpha}^{j*}}} \def\pn{{(2\pi)^{\frac{n}{2}}}} \def\pnn{{(2\pi)^{-\frac{n}{2}}}} \def\haj{{\mathcal{H}_{\alpha}^j}} \def\hak{{\mathcal{H}_{\alpha}^k}} \def\ha{{\mathcal{H}_{\alpha}}} \def\hap{{\mathcal{H}_{\alpha}^{\perp}}} \def\fl{{f^{\lambda}}} \def\gl{{g^{\lambda}}} \def\rzt{{R_{(z,t)}}} \def\rzo{{R_{(z,0)}}} \def\pl{{\pi_\lambda}} \def\plzts{{\pi_\lambda}(z,t)^*} \def\plzt{{\pi_{\lambda}(z,t)}} \def\plzos{{\pi_\lambda}(z,0)^*} \def\rl{{\rho_\lambda}} \def\ul{{U_\lambda}} \def\tl{{T_\lambda}} \def\sl{{S_\lambda}} \def\Fl{{F_\lambda}} \def\zt{{(z,t)}} \def\mzt{{(-z,-t)}} \def\zo{{(z,0)}} \def\ot{{(0,t)}} \def\ws{{(w,s)}} \def\eilt{{e^{i \lambda t}}} \def\emilt{{e^{-i \lambda t}}} \def\eils{{e^{i \lambda s}}} \def\emils{{e^{-i \lambda s}}} \def\plam{{\Phi_{\lambda}}} \def\flam{{F_{\lambda}}} \def\phsi{{\varphi, \psi}} \def\vl{{V^{\lambda}}} \def\nm{{\|}} \def\plots{{\pi_{\lambda}(0,t)^*}} \def\rot{{R_{(0,t)}}} \def\ot{{(0,t)}} \def\eps{{\varepsilon}} \def\1{\text{\bf {1}}} \def\bs{\backslash} \def\id{\mathop{\text{\rm{id}}}\nolimits} \def\im{\mathop{\text{\rm{im}}}\nolimits} \def\h{{\mathfrak h}} \def\oline{\overline} \def \la {\langle} \def \ra {\rangle} \def\Sp{\mathop{\text{\rm Sp}}\nolimits} \def\sspan{\operatorname{span}} \def\proj{\operatorname{proj}} \def\sign{\operatorname{sign}} \newcommand{\wt}{\widetilde} \newcommand{\wh}{\widehat} \DeclareMathOperator{\IM}{Im} \DeclareMathOperator{\esssup}{ess\,sup} \DeclareMathOperator{\meas}{meas} \input{mathrsfs.sty} \begin{document} \setcounter{page}{109} \noindent\parbox{2.95cm}{\includegraphics*[keepaspectratio=true,scale=0.125]{AFA.jpg}} \noindent\parbox{4.85in}{\hspace{0.1mm}\\[1.5cm]\noindent \qquad Ann. Funct. Anal. 3 (2012), no. 1, 109--120\\ {\footnotesize \qquad \textsc{\textbf{$\mathscr{A}$}nnals of \textbf{$\mathscr{F}$}unctional \textbf{$\mathscr{A}$}nalysis}\\ \qquad ISSN: 2008-8752 (electronic)\\ \qquad URL: \textcolor[rgb]{0.00,0.00,0.99}{www.emis.de/journals/AFA/} }\\[.5in]} \title[A characterisation of the Fourier transform on $\H^n$]{A characterisation of the Fourier transform on the Heisenberg group} \author[R. Lakshmi Lavanya, S. Thangavelu]{R. Lakshmi Lavanya$^1$$^{*}$ and S. Thangavelu$^2$} \address{$^{1}$ Ramanujan Institute for Advanced Study in Mathematics\\ $~$University of Madras\\ Chennai-600 005, India.} \email{\textcolor[rgb]{0.00,0.00,0.84}{rlakshmilavanya@gmail.com}} \address{$^{2}$ Department of Mathematics\\ Indian Institute of Science\\Bangalore-560 012, India.} \email{\textcolor[rgb]{0.00,0.00,0.84}{veluma@math.iisc.ernet.in}} \dedicatory{{\rm Communicated by O. Christensen}} \subjclass[2010]{Primary 46K05; Secondary 42A85, 43A32.} \keywords{Heisenberg group, Weyl transform, Heisenberg group Fourier $~$transform, Hermite functions.} \date{Received: 2 November 2011; Accepted: 6 February 2012. \newline \indent $^{*}$ Corresponding author} \begin{abstract} The aim of this paper is to show that any $~$continuous $*$-homomorphism of $L^1(\C^n)$(with twisted convolution as multiplication) into $\CB(L^2(\Rn))$ is $~$essentially a Weyl transform. From this we deduce a similar characterisation for the group Fourier $~$transform on the Heisenberg group, in terms of convolution. \end{abstract} \maketitle \section{Introduction and preliminaries} \noindent \setcounter{equation}{0} The behaviour of the Fourier transform under translations, $~$dilations, modulations and differentiation is well known. It is an interesting fact that a few of these properties are characteristic of the Fourier $~$transform. Several characterisations of the Fourier transform were done in \cite{Em, Fi, Ko, Lu1, Lu2}. A well known property of the Fourier transform is that it takes convolution product into pointwise $~$product. $~$Conversely, is there any relation between the Fourier transform and a map which converts convolution product into pointwise product? $~$Recently, a characterisation for the Fourier transform on $\R^n$ was done in \cite{AAM1, AAM2} $~$without assuming the map to be linear or continuous. In \cite{Ja}, Jaming proved such $~$characterisations for the groups $\Z/n\Z$ and $\Z$(\cite{Ja}, Theorem 2.1), $\Rn$ and $~$$\T^n$ (\cite{Ja}, Theorem 3.1). We state below the result of Jaming for the case $\Rn$ and $\T^n$: \begin{theorem} Let $n \geq 1$ be an integer and $G=\R^n$ or $G=\T^n$. Let $T$ be a continuous linear operator $L^1(G) \rightarrow C(\widehat{G})$(here $\widehat{G}$ denotes the dual group of $G$) such that $T(f*g) = T(f) \ T(g).$ Then there exists a set $E\subset \widehat{G}$ and a function $\varphi: \widehat{G}\rightarrow \widehat{G}$ such that $T(f)(\xi) = \chi_{E}(\xi) \ \widehat{f}(\varphi(\xi)).$ \end{theorem} In the same paper(\cite{Ja}) he posed a question, which leads to that of the characterisation of the Weyl transform in terms of the twisted $~$convolution. Here we attempt to prove such a characterisation and $~$deduce a similar one for the Heisenberg group Fourier transform. An extensive study of Fourier analysis on the Heisenberg group was done in \cite{Ge}. Before stating our results, we recall a few standard notations and terminology as in \cite{Fo, Th1, Th2}. \section{Notations and preliminaries} \setcounter{equation}{0} The $(2n+1)-$ dimensional Heisenberg group $\Hn$ is the nilpotent Lie group whose underlying manifold is $\Cn \times \R$. $\Hn$ forms a $~$noncommutative group under the operation $$(z,t)(w,s) = \left(z+w, t+s+ \frac{1}{2} Im(z.\overline{w})\right), \ (z,t),(w,s) \in \Hn.$$ The Haar measure on $\Hn$ is the Lebesgue measure $dz \ dt$ on $\Cn \times \R$. By the Stone-von Neumann theorem, all the infinite-dimensional $~$irreducible unitary representations of $\Hn$, acting on $L^2(\Rn)$, are parametrised by $\lambda \in \R^{*},$ and are given by $$\pi_{\lam}(z,t) \varphi(\xi) = e^{i\lam t} \ e^{i\lam(x\cdot\xi+ \frac{1}{2} x\cdot y)} \ \varphi(\xi+y) , \ \xi \in \Rn, \ \varphi \in L^2(\Rn),$$ and $z= x+iy \in \Cn.$ The group Fourier transform of an integrable function $f$ on $\Hn$ is defined as $$\widehat{f}(\lam) = \int_{\Hn} f(z,t) \ \pi_\lam (z,t) \ dz \ dt, \ \lam \in \R^{*}.$$ Let $\BLR$ be the space of bounded linear operators on $L^2(\Rn)$. Then we have $\widehat{f}(\lam) \in \BLR$, with $\|\widehat{f}(\lam)\|_{op} \leq \|f\|_{1}.$ \\ \noindent The convolution $f*g$ of functions $f,g$ on $\Hn$ is defined by $$(f*g)(z,t) = \int_{\Hn} f((z,t)(-w,-s)) \ g(w,s) \ dw \ ds, \ (z,t) \in \Hn,$$ whenever the integral exists.\\ \noindent Then the group Fourier transform satisfies\\ \noindent \textbf{Property 1.} $(\widehat{f^*})(\lam) = \widehat{f}(\lam)^*$ for all $\lam \in \R^*$, where\\ $f^*(z,t) = \overline{f(-z,-t)}$ and $(\widehat{f}(\lam))^*$ is the adjoint of the operator in $\BLR$.\\ \noindent \textbf{Property 2.} $(f*g) \ \widehat{} \ (\lam) = \widehat{f}(\lam) \ \widehat{g}(\lam), \ \lam \in \R^*, \ f,g \in \Lh$.\\ \noindent \textbf{Property 3.} $(R_{(z,t)} f)\widehat{} \ (\lam) = \widehat{f}(\lam) \ \pi_{\lam}(z,t)^*, \ (z,t) \in \Hn$, where $R_{(z,t)}$ \ \ denotes the right translation given by $$(R_{(z,t)}f)(w,s) = f(\ws \zt), \ (w,s) \in \Hn.$$ We shall prove in Section 3 that the above properties characterise the group Fourier transform on $\Hn$. For $f \in \Lh$ we denote by $f^{\lam}(z)$, the inverse Fourier transform of $f$ in the $t$-variable, i.e., $$ \ \ f^{\lam}(z) = \int_{\R} f(z,t) \ \eilt \ dt, \ z \in \Cn.$$ We write $\pi_{\lam}(z) = \pi_{\lam}(z,0)$ so that $\pi_{\lam}(z,t) =\eilt \ \pi_{\lam}(z)$ and $$\widehat{f}(\lam) = \int_{\Cn} f^{\lam}(z) \ \pi_{\lam}(z) \ dz.$$ For $\lam \in \R^*$ and $g \in \Lc$, consider the operator $$W_{\lam}(g) = \int_{\Cn} g(z) \ \pi_{\lam}(z) \ dz.$$ When $\lam = 1$, we call this the Weyl transform of $g$. The $\lam$-twisted convolution of functions $f,g \in \Lc$ is defined as $$(f*_{\lam}g)(z) = \int_{\Cn} f(z-w) \ g(w) \ e^{i\small{\frac{\lam}{2}} Im(z.\overline{w})} \ dw, \ z \in \Cn.$$ The convolution of functions on $\Hn$, and the $\lam$-twisted convolution of functions on $\Cn$, are related as $$(f*g)^{\lam}(z) = (f^{\lam}*_{\lam}g^{\lam})(z), \ z\in \Cn.$$ The operators $W_{\lam}$ are continuous, linear and map $\Lc$ into $\BLR$. Also, they satisfy the following properties:\\ \noindent \textbf{Property A.} $W_{\lam}(f^*) = W_{\lambda}(f)^*, \ f \in \Lc$, where $f^*(z) = \overline{f(-z)}$.\\ \noindent \textbf{Property B.} $W_{\lam}(f*_{\lam}g) = W_{\lam}(f) \ W_{\lam}(g), \ f,g \in \Lc,$\\ \noindent i.e., $W_{\lam}$ is a continuous $*$-homomorphism from $\Lc$ into $\BLR$. In Section 3, we shall prove the converse that any continuous $*$-homomorphism from $\Lc$ into $\BLR$ is essentially a Weyl transform.\\ We now recall a few properties of the Hermite and special Hermite functions which will be of much use in proving this characterisation. \noindent For $k \in \N=\{0,1,2,...\}$, let $$h_k(x) = (-1)^k \ (2^k \ k! \ \sqrt\pi)^{(-1/2)} \ \left(\frac{d^k}{dx^k}e^{-x^2}\right) \ e^{x^2/2}, \ x \in \R,$$ denote the normalised Hermite functions on $\R$. The multi-dimensional Hermite functions are defined as $$\Phi_{\alpha}(x) = \prod_{j=1}^{n} h_{\alpha_j}(x_j), \ x=(x_1,...,x_n) \in \Rn, \ \alpha = (\alpha_1,...,\alpha_n)\in \Nn.$$ The collection $\{\Phi_{\alpha} :\ \alpha \in \Nn\}$ forms an orthonormal basis for $L^2(\Rn)$ and their $~$linear span is dense in $L^p(\Rn)$ for $1\leq p < \infty$. For $\lam \in \R^*$, Suppose that $\Phi_{\alpha}^{\lambda}(z) = ~|\lambda|^{\frac{n}{4}} \ \Phi_{\alpha} (\sqrt{|\lambda|} x)$. Then the scaled special Hermite functions are defined by $$\Phi_{\alpha \beta}^{\lam} (z) = \pnn \ |\lam|^{{\frac{n}{2}}} \ \left(\pi_{\lam}(z) \ \Phi_{\alpha}^{\lam},\Phi_{\beta}^{\lam}\right), \ z \in \Cn,$$ and they form an orthonormal basis for $L^2(\Cn)$. Further finite linear combinations of special Hermite functions are dense in $L^p(\Cn)$ for $1\leq p<\infty$. Also they satisfy \begin{eqnarray} \label{1.1}\ \ \ \ \ \ \ \overline{\Phi}_{\alpha \beta}^\lam *_{\lam} \ \overline{\Phi}_{\mu \nu} ^\lam (z) = \ (2\pi)^{\frac{n}{2}} \ |\lam|^{-n} \ \delta_{\alpha \nu} \ \ \overline{\Phi}_{\mu \beta}^{\lam}(z), \ \alpha,\beta,\mu,\nu \in \Nn. \end{eqnarray} We refer to \cite{Th1, Th2} for these properties. We now proceed to prove our main results. \section{Characterisation of the Weyl transform} \setcounter{equation}{0} As recalled in Section 2, the Weyl transform is a continuous linear map from $\Lc$ into $\BLR$ taking twisted convolution into composition of operators. We shall now prove the converse, thus answering a modified version of Jaming's question. We remark that the proof of the following theorem is similar to that of the Stone-von Neumann theorem as in \cite{Fo}. Indeed, if $\rl$ is a primary representation of $\Hn$ with central character $\eilt$, then the operator defined on $\Lc$ by $$\tl(f) = \int_{\Cn} \ f(z) \ \rl \zo \ dz $$ satisfies the hypothesis of the following theorem. By the Stone-von Neumann theorem $\rl\zt$ is a direct sum of representations each of which is unitarily equivalent to $\pl \zt$. The proof makes use of the relations $$\tl f \ \rl(z,0) = \tl (\tau_{z}^{\lam} \ f), \ \rl(z,0) \ \tl \ f = \tl(\tau_{z}^{-\lam} f)$$ where $$ \tau_{z}^{\lam} \ f(w)= f(w-z) \ e^{-i \frac{\lam}{2}\Im(w.\overline{z})}$$ is the $\lam-$twisted $~$translation. The proof given below shows that we really do not need these extra properties in order to prove Stone-von Neumann theorem. \\ The following theorem can also be proved using the Stone-von $~$ Neumann theorem and the representation theory of locally compact groups. We attempt to prove it without using these techniques. \begin{theorem} Let $T: (\Lc,*_{\lam}) \rightarrow \BLR$ be a nonzero continuous homomorphism. Then there is a subspace $\CH^{\lam}$ of $\Lr$ and a unitary representation $\rho_{\lam}$ of $\Hn$ on $\CH^{\lam}$ such that $$T(f) = \ \int_{\Cn} f(z) \ \rho_{\lam} \zo \ dz, \ on \ \CH^{\lam},$$ and there is a decomposition $ \Lr= \CH^{\lambda} \bigoplus V^{\lam},$ where $$V^{\lam}:=\{v \in \Lr : (Tf)(v) = 0 \ \mbox{ for \ all \ } f \in \Lc\}.$$\end{theorem} \noindent \begin{proof} It suffices to prove the result when $\lam=1$ as the general case follows similarly. We let $f \times g:=f*_{\lam}g$ and we will drop all subscripts and superscripts involving $\lam(=1)$.\\ For $\alpha, \beta \in \Nn,$ let $\qab = \pnn \ T(\phab)$. Then \begin{eqnarray} \nonumber \qab \ \qmn &=& \ (2\pi)^{-n} \ T(\phab \times \phmn) \hspace{0.3cm} \mbox{(by hypothesis)} \\ \nonumber &=& \delta_{\alpha \nu} \ \pnn \ T(\overline{\Phi}_{\mu \beta}) \hspace{0.9cm} \mbox{(by \ \eqref{1.1})}\\ \label{2.1}\mbox{i.e.,} \ \ \ \qab \ \qmn &= &\delta_{\alpha \nu} \ Q_{\mu \beta}. \end{eqnarray} For $\alpha, \beta \in \Nn$ and $v,w \in \Lr,$ \begin{eqnarray} \nonumber \pn \ (\qab \ v,w) &=& (v,T(\phab)^* \ w) \\ \nonumber &=& (v,T(\phba) \ w)\\ \label{2.2} \ \mbox{i.e., \ \ \ \ \ } \qab^* &=& \qba, \ \alpha, \ \beta \in \Nn. \end{eqnarray} Note that for each $\alpha \in \Nn, \ \qaa \neq 0.$ To see this suppose $\qaa = 0$ for some $\alpha \in \Nn$. Then $$\qba \ u = \ \qaa \ \qba \ u = 0 \ \mbox{for \ any \ }\beta \in \Nn, \ u \in \Lr.$$ Similarly, $$\qac \ u= \ \qac \ \qaa \ u = 0 \mbox{ \ for \ any \ } \gamma \in \Nn,\ u \in \Lr.$$ For arbitrary $\beta, \ \gamma \in \Nn, \ u \in \Lr$, $$\qbc \ u = \ \qac \ \qba \ u= 0.$$ This implies $T = 0$, a contradiction. Thus $\qaa \neq 0$ for any $\alpha \in \Nn$. \\ Let $\alpha \in \Nn$. Then the range $R(\qaa)$ of $\qaa$ is non-zero. Let $\{\uaj\}_{j=1}^{\infty}$ be an orthonormal basis of $R(\qaa).$ For $\beta \in \Nn,$ define \\ $\vabj = \qab \ \uaj$. Then \begin{eqnarray} \nonumber(\vabj, \vack)&=& (\qca \ \qab \ \uaj, \ \uak) \hspace{2cm} \mbox{(by \ \eqref{2.2})}\\ \nonumber &=& \delta_{\beta \gamma} \ \ (\qaa \ \uaj, \ \uak) \hspace{2cm} \mbox{(by \ \eqref{2.1})}\\ \label{onb} &=& \delta_{\beta \gamma} \ \delta_{jk}. \end{eqnarray} \noindent In particular, \ $\{\vabj\}_{\beta \in \Nn}$ is an orthonormal set.\\ Let $\CH_{\alpha}^j$ be the Hilbert space with $\{\vabj\}_{\beta \in \Nn}$ as an orthonormal basis. Define $\uuaj: \Lr \rightarrow \CH_{\alpha}^j$ by $\uuaj(\Phi_{\beta}) = \vabj, \ \beta \in \Nn.$ Let $$S_{\alpha}^j(f) = \uuaj \ W(f) \ \uuajs, \ f\in \Lc.$$ For $v=\sum_{\beta} \ c_\beta \ \vabj \in \CH_{\alpha}^j$, using the relation $\ W(\phmn) \ \Phi_\beta = \pn \ \delta_{\beta \mu} \ \Phi_\nu$, we have \begin{eqnarray} \nonumber S_{\alpha}^j(\phmn) v &=& \uuaj \ W(\phmn) \ \left( \sum_{\beta} \ c_\beta \ \Phi_\beta \right)\\ \nonumber &=& \pn \ \uuaj \ c_\mu \ \Phi_{\nu}\\ \label{2.3} \mbox{i.e., \ }S_{\alpha}^j(\phmn) v &=& \pn \ c_\mu \ v_{\alpha,\nu}^j \end{eqnarray} \noindent On the other hand \begin{eqnarray} \nonumber T(\phmn) v&=& \pn \ \sum_{\beta} \ c_{\beta} \ \qmn \ \qab \ \uaj\\ \nonumber &=& \pn \ \ c_\mu \ Q_{\alpha \nu} \ \uaj \ \ \ \ \ \mbox{(by \ \eqref{2.1})}\\ \mbox{i.e., \ } \label{2.4} T(\phmn) v&=& \pn \ \ c_\mu \ v_{\alpha,\nu}^j \end{eqnarray} From \eqref{2.3} and \eqref{2.4}, we get \begin{eqnarray*} T(\phmn) v &=& \ (\uuaj \ W(\phmn) \ \uuajs) \ v , \ \mbox{for \ all} \ v \in \haj, \ \mu,\nu \in \Nn. \end{eqnarray*} This gives \begin{eqnarray*} \hspace{1cm} \label{tfhaj}\ T(f)|_{\haj}&=& \ \int_{\Cn} f(z) \ \uuaj \ \pi_{1}(z) \ \uuajs \ dz, \ f\in \Lc.\hspace{1cm}(\theequation) \end{eqnarray*} \noindent Note that \eqref{onb} implies that the spaces $\haj$ and $\hak$ are orthogonal to each other when $j \neq k$.\\ Let $\CH_{\alpha} = \bigoplus _{j=1}^{\infty} \ \haj$ and write $\Lr = \CH_{\alpha} \bigoplus V_1.$ Equation \eqref{tfhaj} gives a complete description of $T$ on $\ha$ and our next task is to obtain one for $T|_\hap$. For this we first show that the range $R(\qab) \subseteq \ha$ for all $\beta \in \Nn.$ If $ v \in R(\qab)$, then using \eqref{2.1} we get \begin{eqnarray*} v &=& \qab \ u = \qab \ \qaa \ u \mbox{ \ for \ some \ } u \in \Lr. \end{eqnarray*} Since $\qaa \ u \in R(\qaa),$ $\qaa \ u = \sum_{j} \ c_j \ \uaj$ and so $$\hspace{-0.7cm}v = \qab \ \qaa \ u = \sum_{j} \ c_j \ \vabj\in \ha.$$ Thus $R(\qab) \subseteq \ha$ for all $\beta \in \Nn$. For $v \in \hap$ and $u \in \Lr$, this gives $(v, \qab \ u)=0$ for all $\beta \in \Nn$, which implies $\qba \ v = 0$ \ by \eqref{2.2}. Thus $$\qba =0 \mbox{ \ on \ }\hap \mbox{ \ for \ all \ } \beta \in \Nn.$$ \noindent By \eqref{2.1}, for $v \in \hap, \ \beta \in \Nn, \ \qbb \ v = \ \ \qab \ \qba \ v =0$. Thus $$\qbb = 0 \mbox{ \ on \ } \hap \mbox{ \ for \ all \ } \beta \in \Nn.$$ Again for $v \in \hap$ and $u \in \Lr,$ $$(\qab \ v,u) = (v, \qba \ u) = \ \ (v,\qaa \ \qba \ u)=0.$$ $ \mbox{Thus \ }\qab=0 \mbox{ \ on \ } \hap \mbox{ \ for \ all \ }\beta \in \Nn$. Finally, for any $v \in \hap, \\ \mu,\nu \in \Nn, \ \qmn \ v = \ \ Q_{\alpha \nu} \ Q_{\mu \alpha} \ v =0$. This gives $T|_{\hap} = 0$.\\ We have thus obtained a collection $\{\haj\}_{j=1,2,...}$ of mutually $~$orthogonal subspaces of $\Lr$ and unitary representations $\rho_\alpha^j\ \zt = \uuaj \ \pi_{1}\zt \ \uuajs$ of $\Hn$, on $\haj$ such that $$T(f)|_{\haj} = \ \int_{\Cn} f(z) \ \rho_{\alpha}^{j} \zo \ dz, \ f\in \Lc.$$ \noindent Then $\rho_{\alpha} = \bigoplus_{j=1}^{\infty} \ \rho_\alpha^j$ is a unitary representation of $\Hn$ on $\ha$ and $$T(f)|_{\ha} = \int_{\Cn} \ f(z) \ \rho_{\alpha} \zo \ dz, \ f \in \Lc,$$ which is the required characterisation. \end{proof} The following remarks are in order. $(L^p(\Cn),*_{\lam})$ is an algebra as long as $ 1 \leq p \leq 2 $ and for $ f \in L^p(\C^n), W_\lambda(f) $ is still a bounded linear operator on $ L^2(\R^n) $ and satisfies $$ \| W_\lambda(f)\| \leq C \|f\|_p .$$ This follows from the fact that for $ \varphi, \psi \in L^2(\R^n) $ the function $ (\pi_\lambda(z,0)\varphi, \psi) $ belongs to $ L^{p'}(\C^n) $ whose norm is bounded by $ \|\varphi\|_2 \|\psi\|_2.$ It is therefore natural to ask if an anlaogue of the above theorem is true for $ 1 < p \leq 2. $ A close examination of the proof shows that Theorem 3.1 is true for $(L^p(\Cn),*_{\lam})$ with $1\leq p \leq2$. Let $S_2$ be the algebra of Hilbert-Schmidt operators on $\Lr$. In the special case when $T$ maps $L^2(\Cn)$ into $S_2$, the decomposition of $\CH^\lam$, obtained in the above result $~$reduces to a finite sum. \begin{corollary} Let $T: (L^2(\Cn),*_{\lam}) \rightarrow S_2$ be a nonzero continuous $~$homomorphism. Then there is a subspace $\CH^{\lam}$ of $\Lr$ and a unitary representation $\rho_{\lam}$ of $\Hn$ on $\CH^{\lam}$ such that $$T(f) = \ \int_{\Cn} f(z) \ \rho_{\lam} \zo \ dz, \ on \ \CH^{\lam},$$ and there is a decomposition $ \Lr= \CH^{\lambda} \bigoplus V^{\lam},$ where $$V^{\lam}:=\{v \in \Lr : (Tf)(v) = 0 \ \forall \ f \in \Lc\}.$$ Moreover $\CH^{\lam}$ is the direct sum of finitely many subspaces of $\Lr$. \end{corollary} \begin{proof} Here again we work with $\lam =1$ and drop all subscripts and superscripts involving $\lambda$. Proceeding as in the proof of the above theorem we obtain a $~$sequence $\{\haj\}_{j=1,2,...}$ of mutually orthogonal subspaces of $\Lr$ and unitary representations $\rho_\alpha^j \zt = \uuaj \ \pi_{1}\zt \ \uuajs$, of $\Hn$ on $\haj$ such that $$T(f)|_{\haj} = \ \int_{\Cn} f(z) \ \rho_{\alpha}^{j} \zo \ dz, \ f\in L^2(\Cn),$$ i.e., $T(f) = \uuaj \ W(f) \ \uuajs$ on $\haj$. Then $$\nm T(f) \nm _{HS}^2 = \sum_{j=1}^{\infty} \ \sum_{\beta \in \Nn} \ \nm T(f)\vabj \nm_2^2.$$ Note that $\sum_{\beta \in \Nn} \ \nm T(f) \vabj\nm_2^2 = \nm W(f)\nm_{HS}^2$ is independent of $j$. Hence the above shows that $\haj \neq \{0\}$ only for finitely many $j$, and the decomposition takes the form $\ha = \bigoplus_{j=1}^{m} \ \haj$ for some $m \in \N.$ \end{proof} \section{Characterisation of the Fourier transform on $\Hn$} \setcounter{equation}{1} In this section we prove a characterisation of the group Fourier transform using Theorem 3.1 of the previous section.\\ Let $L^{\infty}(\R^*, \BLR,d\mu)$ denote the space of essentially bounded functions on $~$$\R^*$, taking values in $\BLR$, where $\R^*$ is equipped with the measure $d\mu(\lam) = (2 \pi)^{-n-1} \ |\lam|^n \ d\lam.$ \begin{theorem} Let $T: \Lh \rightarrow L^{\infty}(\R^*, S_{2}, d\mu)$ be a nonzero $~$continuous linear map satisfying\\ \noindent(i) $T(f^*)(\lambda) = Tf(\lam)^*$, for all $\lam \in \R^*, \ f \in \Lh,$\\ \noindent(ii) $T(f*g)(\lam) = (Tf)(\lam) \ (Tg) (\lam), \ \lam \in \R^*, \ f,g \in \Lh,$ and\\ \noindent(iii) $T(\rot \ f)(\lam) = (Tf)(\lam) \ \emilt, \ \lam \in \R^*, \ f \in \Lh, \ t \in \R.$\\ \noindent Then for each $\lam \in A,$ there is a decomposition $\Lr = \CH^{\lam} \bigoplus V^{\lam}$, and a unitary representation $\rl$ of $\Hn$ on $\CH^{\lam}$ such that $$T(f)(\lam) = \int _{\Hn} \ f \zt \ \rl \zt \ dz \ dt, \mbox{ \ on \ } \CH^{\lam},$$ where $A:= \{\lam \in \R^* : \ (Tf)(\lam) \neq 0 \mbox{ \ for \ some\ } f \in \Lh\}.$ \end{theorem} \begin{proof} Let $\tl(f) = (Tf)(\lam),$ for $\lam \in \R^*, \ f\in \Lh.$ For fixed $\varphi,\psi \in \Lr,$ the map defined on $\Lh$ by $f \mapsto\left(\tl(f) \ \varphi, \ \psi\right)$ $~$satisfies \begin{eqnarray*} |\left(\tl(f) \ \varphi, \ \psi\right)| &\leq& \|\tl(f)\| \ \|\varphi\|_{2} \ \|\psi\|_{2} \hspace{3cm} \\ &\leq& C \ \|f\|_{L^{1}(\Hn)} \ \|\varphi\|_{2} \ \|\psi\|_{2}. \end{eqnarray*} i.e., the above map defines a continuous linear functional on $\Lh$, and so there is $\Fl \in L^{\infty}(\Hn)$ such that \begin{eqnarray*} \label{4.1}\hspace{1cm} (\tl(f)\varphi,\psi) = \int_{\Hn} f(z,t) \ \Fl ((z,t);\varphi,\psi) \ dz \ dt, \ f \in \Lh.\hspace{1cm} \end{eqnarray*} Let $f\in \Lh$ be of the form $f(z,t) =g(z) \ h(t).$ Then \begin{eqnarray*} (\tl(f)\varphi,\psi) &=& \int_{\Hn} \ f \zt \ \flam((z,t);\varphi,\psi) \ dz \ dt \\ &=& \int_{\R} h(t) \ \left(\int_{\Cn} g(z) \ \flam(\zt;\varphi,\psi) \ dz \right) \ dt \hspace{1cm}\\ \hspace{2.5cm} &=& \int_{\R} h(t) \ \Phi_{\lam}(t) \ dt. \end{eqnarray*} where $\Phi_{\lam}(t) = \ \int_{\Cn} g(z) \ \flam(\zt;\varphi,\psi) \ dz.$ But (iii) gives $$ (\tl(f) \ \emils \ \varphi, \psi) = \ (\tl(R_{(0,s)} \ f) \varphi, \psi) = \ \int_{\R} h(t)\ \Phi_{\lam}(t-s) \ dt$$ Thus we get $\plam(t-s) = \emils \ \plam(t) \mbox{\ for all \ } s\in \R, \ a.e. \ t \ \in \R$. Let $\Psi$ be a Schwartz class function on $\R$ such that $\widehat{\Psi}(\lam) \neq 0.$ Then $$\int_{\R} \plam(t-s) \ \Psi(s) \ ds = \int_{\R} \emils \ \plam(t) \ \Psi(s) \ ds = \ \widehat{\Psi}(\lam) \ \plam(t).$$ As the left hand side is a smooth bounded function of $t$, so is $\plam$. Thus we get that $\plam(t-s) = \emils \ \plam(t) \mbox{\ for all \ } s,t \in \R$. In particular $\plam(t) = \eilt \ \plam(0)$ for all $t \in \R.$ Thus for every $g \in \Lc$, the function $$\int_{\Cn} g(z) \ \flam(\zt;\phsi) \ dz$$ is continuous and satisfies $$\int_{\Cn} g(z) \ \flam(\zt;\phsi) \ dz = \ \eilt \ \int_{\Cn} g(z) \ \flam(\zo;\phsi) \ dz$$ Taking $$ g(z) = |B_{r}(w)|^{-1} \ \chi_{B_r(w)} (z) $$ where $ |B_r(w)| $ is the volume of the ball of radius $ r $ centered at $ w $ and and letting $r \rightarrow 0 $, we see that for almost every $w \in \Cn$, $$\flam((w,t);\phsi) = \ \eilt \ \flam((w,0); \phsi).$$ This leads to the equation \begin{eqnarray*} (\tl (f) \varphi, \psi) &=& \int_{\Hn} \ f \zt \ \eilt \ \flam(\zo; \phsi) \ dz \ dt. \\ &=& \int_{\Cn} \ f^{\lam}(z) \ F_{\lam}(\zo;\phsi) \ dz. \end{eqnarray*} Hence $\tl(f)$ depends only on $f^{\lam}$ and satisfies $$\nm \tl(f) \nm \leq C \ \nm f^{\lam} \nm_{\Lc}.$$ For a given $\lam$, fix $\psi \in L^1(\R)$ such that $\widehat{\psi}(-\lam) = 1$ and define $$\sl(g) = \tl(g(z) \ \psi(t)) = \tl(f), \ f \zt = g(z) \ \psi(t).$$ Then it is clear that $\nm \sl(g) \nm \leq C \ \nm g\nm_{\Lc}.$ Moreover, for $g_1,g_2 \in ~\Lc$, with $f_j \zt = g_j(z) \ \psi(t), \ j=1,2,$ we have $$(f_1*f_2)^{\lam}(z) = g_1 *_{\lam} \ g_2(z) = g_1 *_{\lam}g_2(z) \ \widehat{\psi}(-\lam)$$ and hence $(f_1*f_2)^{\lam} = ((g_1*_{\lam} g_2) \ \psi)^{\lam}.$ Since $T_\lambda(f)$ depends only on $f^\lambda$, this gives $$\sl(g_1*_{\lam}g_2) = \tl((g_1*_{\lam}g_2)(z) \ \psi(t)) = \tl(f_1*f_2),$$ and as $\tl(f_1*f_2) = \tl(f_1) \ \tl(f_2) = \sl(g_1) \ \sl(g_2)$, we get \linebreak $\sl(g_1*_{\lam}g_2)=\ \sl(g_1) \ \sl(g_2).$\\ As the operator $\sl$ satisfies the hypotheses of Theorem 3.1, for each $\lam \in A,$ there is a decomposition $\Lr = \CH^{\lam} \bigoplus \ V^{\lam}$ and a unitary representation $\rl$ of $\Hn$ on $\CH^{\lam}$ such that $$\sl(f)|_{\CH^{\lam}} = \ \int_{\Cn} f(z) \ \rl \zo \ dz, \ f \in \Lc.$$ In particular, for $f \in L^1(\Hn)$ \begin{eqnarray*} \sl(\fl)|_{\CH^{\lam}} &=& \ \int_{\Cn} \fl(z) \ \rl \zo \ dz, \\ &=& \ \int_{\Hn} f \zt \ \rho_{\lambda}(z,t) \ dz \ dt. \end{eqnarray*} This gives for all $f \in L^1(\Hn)$ and $\lam \in A$, $$(Tf)(\lam)|_{\CH^{\lam}} = \ \int_{\Hn} f\zt \ \rho_{\lambda}(z,t) \ dz \ dt.$$ \end{proof} In the above theorem, replacing hypothesis (iii) with a stronger assumption, we obtain the following \begin{theorem} Let $T:\Lh \rightarrow L^{\infty}(\R^*, \BLR,d \mu)$ be a nonzero continuous linear map satisfying\\\\ \noindent (i) $T(f^*) (\lam) = (Tf)(\lam)^* , \ \lam\ \in \R^*, \ f\in \Lh,$\\\\ \noindent(ii) $T(f*g)(\lam) = (Tf)(\lam) \ (Tg) (\lam), \ \lam \in \R^*, \ f,g \in \Lh,$ and\\\\ \noindent (iii) $T(\rzt \ f)(\lam) = (Tf)(\lam) \ \plzts, \ \lam \in \R^*, \ f \in \Lh,(z,t) \in ~\Hn.$\\ $$\mbox{Then \hspace{2cm} }(Tf)(\lam) = \widehat{f}(\lam), \ \lam \in A, \ f \in \Lh,\hspace{3cm}$$ where $A:=\{\lam \in \R^* : \ (Tf)(\lam) \neq 0 \ \mbox{ \ for \ some \ } f \in \Lh\}.\hspace{3.5cm}$ \end{theorem} \begin{proof} By the previous theorem, for each $\lam \in A,$ there is a decomposition $\Lr = \CH^{\lam} \bigoplus V^{\lam}$, and a unitary representation $\rl$ of $\Hn$ on $\CH^{\lam}$ such that \begin{eqnarray} \label{4.4} \hspace{1cm} \ T(f)(\lam) = \int _{\Hn} \ f \zt \ \rl \zt \ dz \ dt, \mbox{ \ on \ } \CH^{\lam}.\hspace{2.5cm} \end{eqnarray} \noindent Let $V^{\lambda}=\{v \in \Lr : \ \tl(f) (v) = 0 \ \forall \ f \in \Lh\}$. Let $v \in V^{\lam}.$ Then \begin{eqnarray*} \tl(f) \ v &=& 0 \ \mbox{ \ for \ all \ } f \in \Lh \\ \mbox{gives} \ \ \ \ \ \ \tl(f)\ \plzts v&=& 0 \ \mbox{for \ all} \ f \in \Lh, \ \mbox{for \ all} \ \zt \in \Hn. \end{eqnarray*} This implies that $V^{\lambda}$ is invariant under $\pl.$ Now the irreducibility of ~$\pi_{\lambda}$ forces $V^{\lam} = \Lr$ or $V^{\lam}=(0)$. If $\lam \in A$, then $V^{\lam}\neq \Lr$ and so $V^{\lam}=(0).$\\ But equation \eqref{4.4} gives $T(\rzt \ f)(\lam)=(Tf)(\lam) \ \rl \zt ^*$. This, combined with (iii) of the hypothesis implies for each $f \in \Lh, \lam \in A$ and $\varphi \in \Lr,$ $$(Tf)(\lam) \ \plzts \ \varphi = (Tf)(\lam) \ \rl \zt ^* \ \varphi,$$ which gives $$(Tf)(\lam) \ [( \plzts - \rl \zt ^* )\ \ \varphi] =0.$$ That is, the term in the square bracket is in $V^{\lam}$ and so it is $0$. Thus for all $\lam \in A$ and $\zt \in \Hn, \ \rl \zt = \plzt.$ This gives $$(Tf)(\lam) = \widehat{f}(\lam), \ \lam \in A,\ f \in \Lh.$$ \end{proof} When $T$ is an operator from $\llh$ onto $L^{2}(\R^*, S_{2}, d\mu),$ we obtain the following characterization. \begin{theorem} Let $T: \llh \rightarrow L^{2}(\R^*, S_{2}, d\mu)$ be a nonzero surjective $~$continuous linear map satisfying\\ \noindent(i) $T(f*g)(\lam) = (Tf)(\lam) \ (Tg) (\lam), \lam \in \R^*, \ f,g,f*g \in \llh,$ and \\ \noindent(ii) $T(\rzt \ f)(\lam) = (Tf)(\lam) \ \plzts, \lam \in \R^*, f \in \llh,(z,t) \in \Hn.$\\ \noindent Then $T(f)(\lam) = \widehat{f}(\lam) \mbox{ \ for \ all \ } \lam \in \R^*, \ f\in \llh.$ \end{theorem} \begin{proof} Define $U: \llh \rightarrow \llh$ as $Uf = g$ if $Tf = \widehat{g}$, i.e., $U$ is such that $(Tf)(\lam) = \widehat{(Uf)}(\lam).$ Then $U$ is surjective, linear and ~continuous.\\ If $f_1,f_2,f_1*f_2 \in \llh$ are such that $Uf_1 = g_1, \ Uf_2 = g_2,$ and\\ $U(f_1*f_2)=g,$ then $\widehat{g} = T(f_1*f_2) = \widehat{g_1} \ \widehat{g_2} = (g_1*g_2)\widehat{} \ $. This gives \begin{eqnarray} \hspace{1cm}\label{4.7}U(f_1*f_2) = \ U(f_1) * U(f_2) \mbox{ \ for \ all \ } f_1,f_2,f_1*f_2 \in \llh. \end{eqnarray} \noindent Now, (ii) of the hypothesis and the similar property of the Fourier transform give $$(U \ \rzt \ f)\widehat{} \ (\lam) = (Uf)\widehat{} \ (\lam) \ \plzts = (\rzt \ Uf)\widehat{} \ (\lam)$$ This gives $U \ \rzt \ f = \rzt \ Uf$ for all $f \in \llh$, i.e., $U$ is right-translation invariant. This implies from \cite{Ra} that $$\widehat{(Uf)}(\lam) = \ m(\lam) \ \widehat{f}(\lam), \mbox{ \ for \ some \ } m \in L^{\infty}(\R^*, \BLR,d\mu).$$ This gives \begin{eqnarray} \label{4.5} (U(f*g)) \widehat{} \ (\lam) = \ m(\lam) \ \widehat{f}(\lam) \ \widehat{g}(\lam) = (Uf)\widehat{} \ (\lam) \ \widehat{g}(\lam). \end{eqnarray} \noindent But by \eqref{4.7}, \begin{eqnarray} \label{4.6}(U(f*g))\widehat{} \ (\lam) = (Uf*Ug)\widehat{} \ (\lam) = \widehat{(Uf)}(\lam) \ \widehat{(Ug)}(\lam). \end{eqnarray} \noindent From \eqref{4.5},\ \eqref{4.6} and the surjectivity of $U$, we get $$\widehat{h}(\lam)\ ((\widehat{g}(\lam) - \widehat{(Ug)}(\lam)) =0,\ \mbox{for \ all \ } g,h \in \llh.$$ This implies that the range $R((g-Ug) \widehat{} \ (\lam))$ is contained in the kernel of $\widehat{h}(\lam)$ for all $h \in \llh$, which forces $(g-Ug)\widehat{} \ (\lam) = 0$ for every $\lam \in \llh$. Hence $Ug = g$ for all $g \in \llh$, and thus $$(Tf)(\lam) = \widehat{f}(\lam), \mbox{ \ for \ all \ } \lam \in \R^* , \ f \in \llh.$$ \end{proof} {\bf Acknowledgement.} This work is supported by J. C. Bose Fellowship from the $~$Department of Science and Technology (DST). The first author is thankful to her $~$advisor Prof. K. Parthasarathy for useful discussions and to the $~$National Board for Higher Mathematics, India, for the financial support. \bibliographystyle{amsplain} \begin{thebibliography}{99} \bibitem{AAM1} S. Alesker, S. Artstein-Avidan and V. Milman, \textit{A characterization of the Fourier transform and related topics}, C. R. Math Acad. Sci. Paris \textbf{346} (2008), 625--628. \bibitem{AAM2} S. Alesker, S. Artstein-Avidan and V. Milman, \textit{A characterization of the Fourier transform and related topics}, Linear and Complex Analysis: Dedicated to V. P. Havin on the Occasion of his 75th Birthday, Advances in Mathematical Sciences, Amer. Math. Soc. Transl.(2) \textbf{226}, 2009, 11--26. \bibitem{Em} P. Embrechts, \textit{On a theorem of E. Lukacs}, Proc. Amer. Math. Soc. \textbf{68} (1978),292-294. \textit{Erratum in} Proc. Amer. Math. Soc. \textbf{75} (1979), 375. \bibitem{Fi} C.E. Finol, \textit{Linear transformations intertwining with group representations}, Notas de Matematica No. \textbf{63}, Universidad de Los Andes, Facultad de Ciencias, Departmento de Matematica, Merida-Venezuela, 1984. \bibitem{Fo} G.B. Folland, \textit{Harmonic analysis in phase space}, Annals of Mathematics Studies, \textbf{122}. Princeton University Press, Princeton, NJ, 1989. \bibitem{Ge} D. Geller, \textit{Fourier analysis on the Heisenberg group. I. Schwartz space}, J. Funct. Anal. \textbf{36} (1980), no. 2, 205--254. \bibitem{Ja} P. Jaming, \textit{A characterization of Fourier transforms}, Colloq. Math. \textbf{118} (2010), 569--580. \bibitem{Ko}H. Kober \textit{On functional equations and bounded linear transformations}, Proc. London Math. Soc. \textbf{14} (1964), no. 3, 495--519. \bibitem{Lu1} E. Lukacs, \textit{An essential property of the Fourier transforms of distribution $~$functions}, Proc. Amer. Math. Soc. \textbf{3} (1952), 508--510. \bibitem{Lu2} E. Lukacs, \textit{A linear mapping of the space of distribution onto a set of bounded continuous functions}, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete \textbf{3} (1964), 1--6. \bibitem{Ra} R. Radha and A.K. Vijayarajan, \textit{A convolution type characterization for $L^p$-multipliers for the Heisenberg group,} J. Funct. Spaces Appl. \textbf{5} (2007), no. 2, 175--182. \bibitem{Th1} S. Thangavelu, \textit{Harmonic analysis on the Heisenberg group}, Progr. Math. \textbf{159}, Birkh\"{a}user, Boston, 1998. \bibitem{Th2} S. Thangavelu, \textit{An introduction to the uncertainty principle Hardy's theorem on Lie groups}, Progr. Math. \textbf{217}, Birkh\"{a}user, Boston, 2004. \end{thebibliography} \end{document} .